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Abstract. We study a variation of the combinatorial game of 2-pile
Nim. Move as in 2-pile Nim but with the following constraint:

Provided the previous player has just removed say x > 0 tokens from
the pile with less tokens, the next player may remove x tokens from the
pile with more tokens. But for each move, in “a strict sequence of previ-
ous player - next player moves”, such an imitation takes place, the value
of an imitation counter is increased by one unit. As this counter reaches
a pre-determined natural number, then by the rules of this game, if the
previous player once again removes a positive number of tokens from the
pile with less tokens, the next player may not remove this same number
of tokens from the pile with more tokens.

We show that the winning positions of this game in a sense resemble
closely the winning positions of the game of Wythoff Nim - more pre-
cisely a version of Wythoff Nim with a Muller twist. In fact, we show a
slightly more general result in which we have relaxed the notion of what
an imitation is.

1. Introduction

A finite impartial game is usually a game where

• there are 2 players and a starting position,
• there is a finite set of possible positions of the game,
• there is no hidden information,
• there is no chance-device affecting how the players move,
• the players move alternately and obey the same game rules,
• there is at least one final position, from which a player cannot move,

which determines the winner of the game and
• the game ends in a finite number of moves, no matter how it is

played.

If the winner of the game is the player who makes the last move, then we
play under normal play rules, otherwise we play a misére version of the game.

In this paper a game is always a finite impartial game played under nor-
mal rules. A position from which the player who made the last move, the
previous player, can always win given perfect play, is called a P -position. A
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position where the next player can always win given best play is called an
N -position.

In the classical game of Nim the players alternately remove a positive num-
ber of tokens from the top of any of a predetermined number of piles. The
winning strategy of Nim is to, whenever possible, move so that the “Nim-
sum” of the pile-heights equals zero, see for example [Bou] or [SmSt, page3].
When played on only two piles, the pile-heights should be equal to ensure
victory for the previous player. When played on only one pile there are
only next player winning positions. These two settings for Nim are sim-
ple, but there are many interesting and non-trivial extensions if we adjoin
“move-size” or “pile-size” dynamic rules to Nim on just one or two piles. For
the purpose of this paper we are especially interested in move-size dynamic
games. The game of “Fibonacci Nim” in [BeGuCo, page483] is a beautiful
example of a move-size dynamic game on just one pile. This game has been
generalised in for example [HoReRu]. Treatments of two-pile move-size dy-
namic games can be found in [Co], extending the (pile-size dynamic) “Euclid
game”, and in [HoRe].

1.1. Adjoin the P -positions as moves. Another type of extension to a
game is (*) to adjoin the P -positions of the original game as moves in the
new game. If we adjoin the P -positions of the game of 2-pile Nim as moves,
then we get the famous game of Wythoff Nim (a.k.a Corner the queen), see
[Wy]. Namely, the set of moves are: Remove any number of tokens from
one of the piles, or remove the same number of tokens from both piles. The

P -positions of this game are well-known. Let φ = 1+
√

5
2 denote the golden

ratio. Then (x, y) is a P -position if and only if

(x, y) or (y, x) ∈ {(⌊nφ⌋, ⌊nφ2⌋) | n ∈ N0}.
These P -positions exhibit many beautiful properties that, in generalised
forms, will be revisited often throughout this paper. See for example (1),
Definition 1 and Proposition 1.

Other examples of (*) are some extensions to the game of 2-pile Wythoff
Nim in [FraOz], where the authors adjoin subsets of the Wythoff Nim P -
positions as moves in new games. We discuss briefly extensions of Nim on
several piles in Section 4.

1.2. Remove a game’s winning strategy. In this paper we discuss an-
other approach for expanding well-known games, namely (**) from the orig-
inal game, remove the next-player winning strategy. We will put our main
focus on the setting of 2-pile take-away games, but in section 4 we give some
examples of how our idea can be generalised for n ≥ 2 piles as well. For
2-pile Nim this means that we remove the possibility to imitate the previous
player’s move, in the following sense:

Given two piles of tokens, A and B, one of the piles, say A, is a leading
pile (relative to B) if the number of tokens in A (before removal of tokens)
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is less than or equal to the number of tokens in B. If a pile is not a leading
pile it is a non-leading pile. Remark: For each move the “label” of the piles
is renewed according to the new pile-heights.

The (initial version of the) game of Imitation Nim is then defined as
follows: Given two piles, A and B, the players move as in 2-pile Nim but a
player may not imitate the other player’s move, where by imitate we mean
the following 2-move sequence:

The previous player removed (a positive) number of tokens from a
leading pile and the next player removes the same number of tokens
from the non-leading pile.

This game is a “one-sided” move-size dynamic restriction of the game of Nim.

The options for a move depend on the pile from which the previous player
removed tokens, and how many tokens he removed. So, how can we then
talk at all about P - and N -positions? To clarify matters, one might want
to partition the positions of a (move-size dynamic) game into,

(1) dynamic positions: it is impossible to tell the “winning nature” of
a dynamic position without knowledge about the previous players’
move(s), and

(2) non-dynamic positions:
(a) non-dynamic P -positions: these positions are P -positions re-

gardless of previous move(s), and
(b) non-dynamic N -positions: ditto, but N -positions.

Notice that, by these definitions, an initial position of a move-size dynamic
game is always non-dynamic.

For our game Imitation Nim, a move from an initial position follows the
rules of 2-pile Nim with no extra constraint whatsoever. In the light of the
above definitions, we will now characterize the winning positions of a game
of Imitation Nim via the winning positions of Wythoff Nim (this is a some-
what simplified variant of our main theorem in Section 3, notice for example
the absence of Wythoff Nim P -positions that are dynamic, regarded as po-
sitions of Imitation Nim):

Proposition 0 Let a and b be non-negative integers. Then

(1) if (a, b) is a P -position of Wythoff Nim, it is a non-dynamic P -
position of Imitation Nim;

(2) if (a, b) is an N -position of Wythoff Nim, it is a non-dynamic N -
position of Imitation Nim, if
(a) it is the initial position of a game, or
(b) if there is a P -position of Wythoff Nim, say (c, d), with c < a

such that b − a = d − c, or
(c) if a < b implies that there is a P -position of Wythoff Nim, (a, c)

with c < a;
(3) otherwise a Wythoff Nim N -position is a dynamic position of Imi-

tation Nim.
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Remark 1: For a given position, the rules of Wythoff Nim give more options
than the rules of Nim, whereas the rules of Imitation Nim give less options
than Nim.

1.3. Extensions and their reversals. Our extension of Imitation Nim
is to, given a fixed positive integer p, allow p − 1 imitations (as defined
on page 2) in a sequence and by one and the same player, but to prohibit
the p:th imitation. In other words, an imitation counter is reset to 0, once
a player stops imitating the other player. In the next section we give the
precise setting of these games. We denote this game by (p, 1)-Imitation Nim.

Remark 2: This rule removes the winning strategy from 2-pile Nim if and
only if the number of tokens in the leading pile is ≥ p.

The winning positions of this game correspond, in a way we shall make
precise, to the winning positions of a version of Wythoff Nim with a so-
called Muller twist or blocking manoeuver. This is a variation on the rules
of a game which states that: The previous player may, before the next player
moves, point out a (predetermined) number of options (positions) and de-
clare that the next player may not move there.

For a nice introduction to the concept of a Muller twist, see for example
[SmSt]. Variations on Nim with a Muller twist can also be found in, for
example, [GaSt] (which generalises a result in [SmSt]), [HoRe1] and [Zh].

In section 3, we also expand on the following generalisation of Imitation
Nim: If the previous player removed x tokens from a leading pile, then the
next player may not remove y ∈ [x, x + m − 1] tokens from the non-leading
pile. We denote this game by (1,m)-Imitation Nim.

There is another generalisation of the original game of Wythoff Nim,
which (as we will show in section 3) has a natural P -position “correspon-
dance” with (1,m)-Imitation Nim. Fix a positive integer m. The rules for
this game, that we denote by (1,m)-Wythoff Nim, are: remove tokens from
one of the piles, or remove tokens from both piles, say x and y tokens respec-
tively, with the restriction that | x−y |< m. In [Fra], the author shows that
the P -positions of (1,m)-Wythoff Nim are so-called “Beatty pairs” (view for
example the appendix, the original paper(s) in [Bea] or [Fra, page355]) of
the form {nα, nβ}1 where β = α + m, n is a non-negative integer and

(1) α =
2 − m +

√
m2 + 4

2
.

In [HeLa] we put a Muller twist on the game of (1,m)-Wythoff Nim. Fix
two positive integers p and m. Suppose the current pile-position is (a, b).
The rules are: Before the N -player removes any tokens, the P -player is al-
lowed to announce j ∈ [1, p − 1] positions, say (a1, b1), . . . , (aj , bj) where
bi − ai = b− a, to which the N -player may not move. Otherwise move as in

1We use the notation {x, y} for unordered pairs of integers, that is, whenever (x, y)
and (y, x) are considered the same.



2-PILE NIM WITH A RESTRICTED NUMBER OF MOVE-SIZE IMITATIONS 5

(1,m)-Wythoff Nim. In this paper we denote this game by (p,m)-Wythoff
Nim, or simply Wp,m.

The P -positions of this game can easily be calculated by a minimal ex-
clusive algorithm (but with exponential complexity in succint input size) as
follows: Let X be a set of non-negative integers. Define mex(X) as the least
non-negative integer not in X, formally mex(X) := min{x | x ∈ N0 \ X}.

Definition 1 Given positive integers p and m, the integer sequences (ai)
and (bi) are: a0 = b0 = 0 and for i > 0

ai = mex{aj , bj | 0 ≤ j < i};
bi = ai + δ(i),

where δ(i) = δm,p(i) := ⌊ i
p⌋m.

From [HeLa], Proposition 3.1 (see also Remark 1) we can derive the fol-
lowing results.

Proposition 1 Let p and m be positive integers.
a) The P -positions of (p,m)-Wythoff Nim are the pairs {ai, bi}, i ∈ N0, as
in Definition 1;
b) Together these pairs partition the natural numbers;
c) Suppose (a, b) and (c, d) are two distinct P -positions of (p,m)-Wythoff
Nim with a ≤ b and c ≤ d. Then a < c implies b − a ≤ d − c (and b < d);
d) For each δ ∈ N, if m | δ then #{i ∈ N0 | bi − ai = δ} = p, otherwise
#{i ∈ N0 | bi − ai = δ} = 0.

The “(p,m)-Wythoff pairs” from Proposition 1 may be expressed via
Beatty pairs if p | m. Then the P -positions of (p,m)-Wythoff Nim are
of the form

(pan, pbn), (pan + 1, pbn + 1), . . . , (pan + p − 1, pbn + p − 1),

where (an, bn) are the P -positions for the game (1,m/p)-Wythoff Nim.

For any other p and m we do not have a polynomial time algorithm for
telling wether a given position is an N - or a P -position. But we do have
a conjecture in [HeLa] section 5, saying in a specific sense that the (p,m)-
Wythoff pairs are “close to” certain Beatty pairs. This has recently been
settled for the case m = 1, see the appendix.

As we have already hinted, the winning positions for (p, 1)-Imitation Nim
correspond to the winning positions of (p, 1)-Wythoff Nim whereas the win-
ning positions for (1,m)-Imitation Nim correspond to the winning positions
of (1,m)-Wythoff Nim. For our main theorem in section 3, we show how
our two extensions above can thrive in one and the same game, namely for
fixed positive integers p and m, we define a game that we denote by (p,m)-
Imitation Nim and show how the winning positions of this game correlate to
(p,m)-Wythoff Nim. Section 2 is devoted to some preliminary terminology
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for the definition of the rules of our games.

Suppose p > 1. The analogous partitioning of the winning positions for
(p,m)-Imitation Nim as we did for (1, 1)-Imitation Nim in Proposition 0,
will essentially be done in the beginning of section 3. For this generalisation
there are “more” dynamic positions. Namely, we will see that some of the
P -positions of (p,m)-Wythoff Nim are dynamic.

Remark 3: The number of permitted imitations in (p, 1)-Imitation Nim
may be viewed as “a reversal” of the number of positions the previous player
may block from the next player’s options in the game of (p, 1)-Wythoff
Nim. A greater p in the game of (p, 1)-Wythoff Nim makes “life a little bit
harder” for the next player - less options to choose from. A greater p in the
game of (p, 1)-Imitation Nim gives more leeway to imitate a move, hence
less imposed constraint and “game-life is easier”. For m ≥ 1, the rules of
(1,m + 1)-Imitation Nim impose more restrictions on a move than the rules
of (1,m)-Imitation Nim. On the other hand, the rules of (1,m+1)-Wythoff
Nim are less restrictive than those of (1,m)-Wythoff Nim.

In section 2 we give a formal notation to our previous discussions to be
used in the proof of the main theorem in Section 3.

In Section 4, where the paper again has a more informal style, we give
a couple of suggestions for future work. In the first part we discuss a dif-
ferent setup of an impartial game, where one of the players, say the first
player knows how to play optimally, and the second does not. In our set-
ting, the first player is not aware of the second player’s lack of knowledge
of the strategy. Given that the same game is going to be played several
times, this setting gives us an interpretation of games as primitive forms of
learning devices.

In the last part of Section 4 we discuss extensions of Nim to several piles.
We generalise in both directions, from 2-pile Wythoff Nim and from 2-pile
Imitation Nim. At the end some questions are formulated.

2. Terminology and rules of the game

Let N denote the natural numbers {1, 2, . . .} and let N0 := N ∪ {0}.

We will now give a more formal setting to our discussion in Section 1.
Let G denote a 2-pile take-away game. Then V (G) denotes the set of all
positions of G. Suppose X ∈ V (G). Then F (X) denotes the set of follow-
ers or options of X, the set of positions that the next player may move to
from X. Let X2 ≥ X1 ≥ 0 denote the respective pile-heights of X and let
∆(X) := X2 − X1 ≥ 0.
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Suppose A and B are (in this order) the two piles of a 2-pile take-away
game, and they contain a and b tokens respectively. As before, {a, b} de-
notes the unordered pair of the pile-heights. The pile-position is (a, b) and
a move is denoted by (a, b) → (c, d), where a− c ≥ 0 and b − d ≥ 0 but not
both a = c and b = d. For notational purposes, we allow a move to be either
legal or illegal. A move is legal if, by removing tokens, the player ends up
in a pile-position such that none of the rules of game have been violated.
Otherwise a suggested move is illegal and may not be carried out.

2.1. Positions with memory. By the move-size dynamic nature of our
games, to simplify the statement and proof of our main theorem in section
3, we have felt encouraged to introduce some non-standard terminology.

Suppose X is a position of a 2-pile take-away game and suppose that the
players have this far removed tokens a combined number of n times. Let
X−i denote the i:th last pile-position of this specific game if n ≥ i, oth-
erwise let X−i denote the initial position. Notice that with this notation,
X = X−1 if and only if X is the initial position of a game. Whenever we
refer to a (game-)position or a position with memory, we mean not only the
current position but also the two players’ preceeding pile-positions (if any)
- although, as we will soon see, the players never need to remember more
than a predetermined fixed number of moves for our specific setting.

Let us analyse a few examples of this notation:

(2) X−1
1 = X1,

(3) X−2
2 = X−1

2

and

(4) X−2
1 − X−1

1 ≥ X−1
2 − X 2 > 0.

By the condition (2) one understands that the previous player (by the
most recent move) only removed tokens from the heap with more tokens.
The condition (3) means that in the “next” player’s last move, the pile with
more tokens was left untouched. Then it is not hard to see that (4) implies
(2) and (3) for any game where

(O) a move consists of removing a positive number of tokens from pre-
cisely one of the piles.

2.2. An imitation rule. Let G be a take-away game on 2 piles of tokens
where (O) holds. Define µ : V (G) → N∪{∞} as follows. Suppose X ∈ V (G).
Then,

µ(X) := X−1
2 − X2 − (X−2

1 − X−1
1), if (4) holds.

µ(X) := ∞, otherwise.

Notice that for example X2 = X−1
2 or X−1

1 = X−2
1 implies µ(X) = ∞. Let

m be a positive integer. Then we say that X−1 → X is an m-imitation
of X−2 → X−1 if 0 ≤ µ(X) < m. When m is fixed we say simply that



8 URBAN LARSSON

X−1 → X is an imitation. Note that if m = 1 then X−1 → X is an imita-
tion if and only if µ(X) = X−1

2 − X2 − (X−2
1 − X−1

1) = 0.

Let L = Lm : V (G) → N be a recursively defined imitation counter :

L(X) := L(X−2)+1, if X−1 → X is an m-imitation of X−2 → X−1.
L(X) := 0, otherwise.

In particular L(X) = 0 if X is the initial position of a game.

Fix two positive integers p and m and a game-position X. We will now
define the rules of our 2-pile take-away game which will be denoted by (p,m)-
Imitation Nim, or simply Ip,m.

The players move as in 2-pile Nim, but with the constraint: The next
player may move X → Y only if

(5) Lm(Y ) < p.

2.3. Sets of winning positions. Let a and b be non-negative integers and
define

ξ
(

(a, b)
)

:= #
{

(i, j) ∈ PWp,m | j − i = b − a, i ≥ a
}

.

Then according to Proposition 1d, 1 ≤ ξ((a, b)) ≤ p.

Given that a position is treated as a game-position (each position contains
information about the last 2p − 1 moves at least) we denote with

NIp,m := {X | X is an N -position of (p,m)-imitation Nim }
and

PIp,m := {X | X is a P -position of (p,m)-imitation Nim }.
Whenever positive integers p and m are fixed we may abbreviate (p,m)-

Wythoff Nim simply by Wythoff Nim.

3. A winning strategy

Let p and m be positive integers. Suppose X is a game-position of (p,m)-
imitation Nim. Then we define the sets P ′ = P ′(p,m) and N ′ = N ′(p,m)
as:

X ∈ P ′ if:
(P1) X is a P -position of (p,m)-Wythoff Nim and Lm(X) < ξ(X),

or
(P2) X is an N -position of (p,m)-Wythoff Nim and there is a X1 ≤

j < X2 such that {X1, j} is a P -position of (p,m)-Wythoff Nim
and (X1,X2) → (X1, j) implies Lm((X1, j)) ≥ ξ((X1, j)).

X ∈ N ′ if:
(N1) X is an N -position of (p,m)-Wythoff Nim, and

(a) X is the initial position of the game, or
(b) there is an i < X1 such that {X1, i} is a P -position of

(p,m)-Wythoff Nim, or
(c) there is a j > X2 such that {X1, j} is a P -position of

(p,m)-Wythoff Nim, or
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(d) there is a X1 ≤ j < X2 such that {X1, j} is a P -position
of (p,m)-Wythoff Nim, but (X1,X2) → (X1, j) implies
Lm((X1, j)) < ξ((X1, j));

or
(N2) X is a P -position of (p,m)-Wythoff Nim and p > Lm(X) ≥

ξ(X).

Notice that N1b, N1c and N1d are mutually exclusive. Let us now study
some of the structure of the above definition and show that P ′ ∩N ′ = ∅.

Lemma 1 Given a position X and the definitions of P ′ and N ′,

(i) P1 holds if X is the initial position of a game,
(ii) P1 holds if X1 ≤ i for all P -positions {i, j} of (p,m)-Wythoff Nim

such that X2 − X1 = j − i ≥ 0.
(iii) N1a implies N1b, N1c or N1d, and
(iv) X ∈ N ′ if and only if X /∈ P ′.

Proof. Case i: If X is the initial position then by definition L(X) = 0,
but then since X is a P -position of (p,m)-Wythoff Nim surely ξ(X) > 0.

Case ii: If X is of the form as in (ii) then ξ(X) = p, but by the rules of
game L(X) < p.

Case iii: If X1 = j ≥ i ≥ 0 for some P -position {i, j} of Wythoff Nim, then
by N1b we are done. Else, since the P -positions of Wythoff Nim partition
the natural numbers, we may assume X1 = i ≤ j for some P -position {i, j}.
But, if X2 < j then {X1,X2} is of form N1c, so assume X2 > j. Then, since
X is an initial position, X → (X1, j) is not an m-imitation, which implies
N1d.

Case iv: Viewed as a position of the game of Wythoff Nim, X is either

I. a P -position, or
II. an N -position.

Let us start with the “only if” part. If X ∈ P ′ then

• if I. holds, N1 is false. By (i) and (ii), X satisfies L(X) < ξ(N) so
that X can not be of the form N2.

• if II. holds, N2 is false. By Proposition 1b, N1b and N1c are false.
With notation as in P2, since L((X1, j)) ≥ ξ((X1, j)), N1d is false.

For the “if” part. If X /∈ P ′ then

• if II. holds, by the negotiation of P2, if N1b or N1c holds, we are
done, so suppose X2 > j with notation as in N1d. Then again, the
falsity of P2, L((X1, j)) < ξ((X1, j)) gives N1d;

• if I. holds, P1 must be false. But then since L(X) < ξ(X) ≤ p, N2
gives X ∈ N ′.

We are done.

With terminology as in the introduction, we have given a strong hint that
the non-dynamic P -positions are as in Lemma 1(ii). On the other hand, we
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will see in the proof of the main theorem that the non-dynamic N -positions
are precisely of the forms N1b or N1c.

3.1. Putting it all together. For the proof of the main theorem, we will
need some well-known facts on impartial games. For a specific game,

• a non-terminal position is a P -position if and only if each one of its
followers is an N -position;

• a position is an N -position if and only if there is a P -position among
its set of followers.

Main theorem Let p and m be positive integers. Then

N ′(p,m) = NIp,m

and

P ′(p,m) = PIp,m.

Proof. It suffices to show that, for a position Y = (Y1, Y2) with Y1 ≤ Y2:

I. if Y ∈ P ′ then F (Y ) ⊂ N ′;
II. if Y ∈ N ′ then P ′ ∩ F (Y ) 6= ∅.

Notice that if Y is a final position, then either

Y = (0, 0), or
Y → (0, 0) is illegal, but then L((0, 0)) = p = ξ((0, 0)), which implies
P2.

Hence, if Y is a final position, then Y ∈ P ′. But then F (Y ) = ∅ ⊂ N ′ so
that I. is true. For the remainder of the proof assume that Y is not a final
position.

Case I. Define S = S(Y ) := P ′ ∩ F (Y ). There are two possibilities for
Y ∈ P ′:

A) Y is a P -position, viewed as a position of Wythoff Nim. By O, we
get that S(Y ) ⊂ NWp,m. Then either the next player removes tokens
from the pile with:

1) less tokens, say Y → X = (X1, Y2), (where X ∈ NWp,m, as in
the definition of N ′). Then

∗ if there is an integer i ≤ X1 such that (X1, i) is a P -
position of Wythoff Nim, by N1b, we get X ∈ N ′;

∗ otherwise, by Proposition 1c, there is an integer j with
X1 < j < Y2 = X2 such that (X1, j) is a P -position of
Wythoff Nim. Then, if j−X1 ≤ Y2−Y1 < j−X1+m, the
move X → (X1, j) is an m-imitation and so, by P2, we
get ξ((X1, j)) > ξ(Y ) ≥ L(Y ) + 1 = L((X1, j)). Then, by
N1d, we get X ∈ N ′. If on the other hand X → (X1, j)
is not an m-imitation we get L((X1, j)) = 0 and again,
N1d gives X ∈ N ′;

2) more tokens, say Y → X = (Y1,X2). Then,
∗ if X1 = Y1 < X2 < Y2 = j, by N1c, we get X ∈ N ′;
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∗ if X2 ≤ Y1 = X1, by N1b and N1c we may assume
that there is a X1 ≤ j < X2 such that (Y1, j) ∈ PWp,m.
But, since the previous player removed tokens from the
larger pile, the move X → (X1, j) is no imitation and so
0 = L((X1, j)) < 1 ≤ ξ((X1, j)), which implies N1d.

Hence, we may conclude that S(Y ) does not contain any Wythoff
Nim P -positions.

B) Y is an N -position viewed as a position of Wythoff Nim, and hence
of the form P2:

1) Suppose that S(Y ) contains a position of form P1, say (Y1, j),
with Y1 ≤ j < Y2. But this is impossible, since by P1 and P2,
in this order, we get ξ((Y1, j)) > L((Y1, j)) ≥ ξ((Y1, j)).

2) Suppose that S(Y ) contains a position of form P2, say X.
(a) Then, if there is a X1 ≤ j < X2 < Y2 such that (Y1, j) is

a Wythoff Nim P -position, the move (Y1,X2) → (Y1, j)
does not imitate Y → (Y1,X2), a contradiction to P2.

(b) Suppose rather that X1 < Y1 and that there are inte-
gers j′ < j < Y2 = X2 such that (X1, j

′) and (Y1, j) are
(distinct) P -positions of Wythoff Nim.
Then, by Proposition 1, we have two cases, either j−Y1 =
j′−X1, or j−Y1 ≥ j′−X1+m. by L((Y1, j)) ≥ ξ((Y1, j)),
the definition of an m-imitation, for the move Y −1 → Y ,
a player has removed tokens from the pile with less to-
kens. This means that the move Y −1 → Y did not imi-
tate Y −2 → Y −1. Hence we get at best L((X1, j

′)) = 1.
If j − Y1 = j′ − X1 then, 2 ≤ ξ((X1, j

′)) contradicting
P2, so we may assume that j − X1 ≥ j′ − X1 + m. Since
Y2 = X2 > j we get µ((X1, j

′)) = X2 − j′ − Y1 −X1 ≥ m.
So, by definition X → (X1, j

′) is not an imitation of
Y → X and therefore L((X1, j

′)) = 0 < ξ((X1, j
′)), con-

tradicting P2.

Hence there is no Wythoff Nim N -position in S(Y ).
We may conclude that S(Y ) = ∅ which settles Case I.

Case II. We are going to explicitly find an X ∈ P ′ ∩F (Y ) for each form of
Y ∈ N ′:

A) Y is a P -position viewed as a position of Wythoff Nim. Hence, by
N2, p > L(Y ) ≥ ξ(Y ) ≥ 1, which implies that there is an largest
i < Y1 with Y2−Y1 = j− i such that (i, j) is a P -position of Wythoff
Nim. Take X = (i, Y2). Then X → (i, j) is an imitation of Y → X
and so

L((i, j)) = L(Y ) + 1 ≥ ξ(Y ) + 1 = ξ((i, j))

implies P2.
B) Y is an N -position viewed as a position of Wythoff Nim. Due to

Lemma 1(iii), we have three cases to consider:
1) Y is of the form N1b. Here we can remove tokens from the pile

with more tokens, Y2, as to get to a Wythoff Nim P -position,
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say (Y1, Y2) → (i, Y1), where Y1 > i. This move can not be
an imitation of Y −1 → Y since with the notation as in (2), we
may take X−1

1 = Y1 > i = X1 which contradicts (2). Hence
0 = L((i, Y1)) < 1 ≤ ξ((i, Y)) and so by P1c we can take X :=
(i, Y1) ∈ P ′.

2) Y is of the form N1c. For this case, by Proposition 1, there is
a j > Y2 and a largest number 0 ≤ α < Y1, such that (α, β) is
a P -position of Wythoff Nim and

β − α ≤ Y2 − Y1 < j − Y1.

Since, by Proposition 1, j−i = β−α+m, we get that (α, Y2) →
(α, β) is an m-imitation of Y → (α, Y2) and hence 1 = L(α, β) ≥
ξ(α, β) = 1, where the last equality comes from the particular
choice of α. Hence, take X := (α, Y2), a P ′-position of form P2.

3) Y is of the form N1d. There is a j < Y2 such that X := (Y1, j)
is a P -position of Wythoff Nim. Then Y → X is a legal move
since, by N1d and Proposition 1a, L(X) < ξ(X) ≤ p and X is
of the form P1, hence a P ′ position.

We are done with case II.

We may, by Lemma 1(iv), conclude that X is a P -position of (p,m)-Imitation
Nim if and only if X ∈ P ′(p,m).

Remark 4: Suppose that the starting position is an N -position of (p,m)-
Wythoff Nim (as it almost always is). The first player’s initial winning move
for (p,m)-Wythoff Nim is precisely the same as for (p,m)-Imitation Nim,
except for one ”class of” N -positions where, in the Wythoff setting, the first
player makes a ”diagonal move”. As one can read out of the above proof,
this is the situation where the first player has to rely on the “full power” of
the imitation rule, (5).

Remark 5: If on the other hand the initial position is a (p,m)-Wythoff Nim
P -position, then the first player has to move to a Wyhtoff Nim N -position
which in this case, by (5), with certainty is an Imitation Nim N -position.
Then, for this (very) special case, the second player can, by N2 and the
Main theorem be certain to win.

4. Suggestins for future work

In [Ow], Section VI.2 the author discusses “Games with incomplete in-
formation” (mostly for probabalistic games). Given that a particular game
is going to be played many times, a second player’s strategy will be to try
and learn the first player’s strategy. He has to not only interpret the way
the first player moves, but also, by his own moves, try and “encourage” the
first player to reveal the P -positions of the game. By this second player
strategy, also the first player gets a new challange, to try her best to conceal
the victorious path, but at the same time try to assure the final victory.
This setting can be framed naturally in both probabilistic and deterministic
games, as can be seen for example on page 17 of [BeCoGu], volume 1, where
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the authors discuss “When is a move good?” in a sense similar to the above.

In the first part of this section we make a couple of statements regarding,
which on the one hand, of our games are good for the first player who wishes
to conceal (vital parts of) her winning strategy, and on the other, for which
games there is an optimal second player learning strategy. And indeed, we
show that “imitation” is a means for learning a strategy and “blocking” is
a means for concealing information, maybe not all that surprising!

In the last part of this final section we define 4 extensions of Nim on sev-
eral piles, of which two are generalisations of Imitation Nim (sample-games
A and B)and the others of Wythoff Nim. There is literature available on
the latter.

Let n ≥ 2 be an integer. Denote n-pile Nim with Nn. In [Fra1], the idea
(*) from Section 1 is used in the context of finding the “correct” extension
of n-pile Nim to n-pile Wythoff Nim, denoted here by WNn. Namely, if we
adjoin every P -position of N -pile Nim, as a move in n-pile Nim, we clearly
get a new game, generalising Wythoff Nim. The rules are to move as in n-
pile Nim or to remove a positive number of tokens from any positive number
of piles as long as the Nim-sum of the number of removed tokens from each
pile equals zero.

We have not elaborated on this version of n-pile Wythoff Nim for n > 2,
but rather give references for further information to the interested reader.
Two conjectures were phrased in [Fra1, section5] on the winning positions
of n-pile Wythoff Nim. These conjectures have been further investigated in
the articles [SuZe], [Su] and [FrKr]. In the two latter, the authors inde-
pendently prove that conjecture 1 implies conjecture 2.

If one adjoins a subset S of PNn as moves to Nn one may arrive at games
with P -positions distinct from Nim. For a complete answer on what subsets
S changes Nim’s winning strategy, see [BlFr]. For two specific examples,
see our sample-games 1) and 2) below.

4.1. A second player learning strategy. Suppose X is a position of a
2-pile take-away game, then X is

• P -stable, if X is of form X1 ≤ i for all P -positions {i, j} of (p,m)-
Wythoff Nim such that X2 − X1 = j − i;

• P -free, if X is a P -position of (p,m)-Wythoff Nim, but not P -stable;
• N -stable, if there is an i < X1 such that {i,X1} is a P -position of

(p,m)-Wythoff Nim, or if there is a j > X2 such that {X1, j} is a
P -position of (p,m)-Wythoff Nim;

• N -free, if there is a j < X2 such that {X1, j} is a P -position of
(p,m)-Wythoff Nim.

Let us for the purpose of this section change the setting of a game so that
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• the second player does not have perfect information about the win-
ning strategy, but the first player is not aware of this fact;

• the game is going to be played several times.

Then the question is, given that the first player will not take any risks, can
the second player,

• force the first player to move in such a way that she in order to be
certain to win the game reaveals the winning strategy;

• use the information of how the first player moves, in such a manner
as to get full control of the winning strategy for a future play of the
game?

We will hint that for some games this is possible, but for other games the
first player can by moving intelligently “conceal” most of the P -positions of
the game, still assuring herself of the final victory. Of course, the second
player can find out the P -position by some other intelligent means, by a
minimal exclusive algorithm or otherwise, but our emphasis here is the actual
“learning situation”, the interaction between the two players, as they move
in a game-graph towards a sink of the game.

4.1.1. Wythoff Nim’s second player strategy. For the classical game of Wythoff
Nim there is a successful learning strategy for the second player. There is no
question of what the first player should do, since almost always a “random”
starting position is an N -position. Then, for (1, 1)-Wythoff Nim, the second
player can by using the correct strategy learn the winning structure for the
game:

Suppose the first player has moved to the P -position (a, b). If the second
player moves to (a, b− 1), then by Proposition 1 (with p = m = 1), the first
player is encouraged to move to the P -position (c, d), where d−c = b−a−1.
Succesively every P -position will be revealed.

4.1.2. When learning how to win is blocked. However for (p,m)-Wythoff
Nim in general this strategy will not work for the simple reason that, by
Proposition 1, the first player may immediately grab a P -stable position
and then the second player will not have a clue where the corresponding
P -free positions are, precisely:

Fix the integers p > 1 and m > 0. Suppose the first player moved to a
(stable) P -position (a, b). If the second player moves to (a, b − 1), then by
Proposition 1, the first player is encouraged to move to the unique P -stable
position (c, d) where d− c = b− a−m (existence is clear by Proposition 1).
But by Proposition 1 there is at least one more P -position, say (e, f), such
that c < e < a. The existence is clear but the precise location of (e, f) will
remain hidden for the second player. There is no other learning strategy for
the second player.

4.1.3. When imitation is learning. There is a second player strategy for the
game of (p,m)-Imitation Nim for the purpose of learning the P -positions for
(p,m)-Wythoff Nim. By our main theorem it suffices to know these posi-
tions to win (p,m)-Imitation Nim. What the second player should do is to
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try and actively encourage the first player to remove tokens from a leading
pile as to get to a least number in a P -position of (p,m)-Wythoff Nim.

Fix the integers p > 0 and m > 0. Suppose the starting position, say X,
of (p,m)-Imitation Nim is an N -position. Then X is either

• N -free, or
• N -stable.

If X is N -free, then the first player will move to a P -position as in the
game of (p,m)-Wythoff Nim. The second player strategy is to remove the
smallest possible number of tokens (given the previous player’s move) from
the non-leading pile.

If X is N -stable, then if there is a P -position, say Y , of (p,m)-Wythoff
Nim with X1 > Y1 and ∆(X) ∈ [∆(Y ),∆(Y ) + m − 1], the first player will
move X → (Y1,X2). Then the second player should move to Y and he can
do this without any knowledge of the P -positions except that ∆(Y ) ≡ 0
(mod m). Otherwise the idea is similar to the N -free case.

4.2. Variations of Nim on several piles. Given n ≥ 2 piles of tokens, as
before we denote n-pile Nim with Nn.

4.2.1. Adjoin P -positions as moves. We will now define two extensions of
Nn that also generalises 2-pile Wythoff Nim:

Sample-game 1: Adjoin as moves to Nn the positions (a1, . . . , an) such that
ai = aj > 0 for exactly one pair of indices i, j and ak = 0 for all other
indices. By this we mean that the next player, in addition to the ordinary
Nim rules may remove precisely the same number of tokens from precisely
two piles. Let us denote this game by W2Nn. For example the “diagonal”
move from the position (1, 1, 1) is to {0, 0, 1} and from (1, 2, 3) the set of
“diagonal” moves are to (0, 1, 3), (1, 1, 2), (0, 2, 2) and (0, 1, 1).

Sample-game 2: Adjoin as moves to Nn the positions (a1, . . . , an). By this
we mean that the next player in addition to the ordinary Nim rules may
remove precisely the same number of tokens from any number of piles. Let
us denote these games by W2,...,nNn. For example the “diagonal” moves from
the position (1, 1, 1) are to {0, 0, 1} and (0, 0, 0). The “diagonal” moves from
(1, 2, 3) are to (0, 1, 3), (1, 1, 2), (0, 2, 2), (1, 0, 1) and (0, 1, 2).

4.2.2. Remove the winning strategy from Nn. We are going to define two
games that comes to mind when applying the idea: via “an imitation-rule”,
remove the winning strategy from n-pile Nim.

Sample-game A: Move as in n-pile Nim, but with the restriction

• given that the previous player removed say x tokens from a leading
pile

• before the next player moves, the previous player points at one non-
leading pile and declares that the next player may not remove x
tokens from this pile.
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If the previous player removed tokens from a non-leading pile, then pointing
at another pile does not impose any restriction to the next players move.
Let us denote this game with I1Nn. One can check that this game removes
the winning strategy from Nim. It has a curious nature of giving a Muller
twist to a move-size dynamic variation of Nim.

Sample-game B: Move as in n-pile Nim, but with the restriction

• given that the previous player removed say x tokens from a leading
pile

• the next player may not remove x tokens from any one of the non-
leading piles.

Let us denote this game with InNn. One can check that this game removes
the winning strategy from Nim.

4.2.3. A negative result. The sample-games 1. and A. are attempts to find
“closely related” variations of the 2-pile Nim setting, following the idea (*)
and (**) in Section 1. Analogously for sample game 2. and B. But, by run-
ning computer-simulations for the three-dimensional case, we have found
the following:

For n > 2 (regarded as starting positions),

• PI1Nn ∩ NW2Nn 66= ∅;
• PInNn ∩ NW2,...,nNn 6= ∅;
• NWNn is neither disjoint from PI1Nn nor from PInNn .

We have choosen not to include these simulations, since the ambition of this
section is merely to suggest possible directions for further work.

Questions:

• Is there a (non-trivial) generalisation of 2-pile Wythoff Nim to n ≥ 2
piles of tokens, say WN ′

n, together with a generalisation, say IN ′
n,

of 2-pile Imitation Nim, such that for some (each) n > 2, PWN ′

n
=

PIN ′

n
?

• Can one generate the P -positions for the 4 sample-games in a poly-
nomial time (as in succint input-size), look first at n = 3?

• Are there other combinatorial games where an imitation rule corre-
spond in a natural way to a blocking manuever?

• Can one formulate a general rule as to when such correspondances
can be found and when not?
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Appendix

Peter Hegarty

The purpose of this appendix is to provide a proof of Conjecture 5.1 of
[HeLa] in the case m = 1, which is the most natural case to consider. No-
tation concerning ‘multisets’ and ‘greedy permutations’ is consistent with
Section 2 of [HeLa]. We begin by recalling

Definition : Let r, s be positive irrational numbers with r < s. Then
(r, s) is said to be a Beatty pair if

1

r
+

1

s
= 1.(6)

Theorem Let (r, s) be a Beatty pair. Then the map τ : N → N given by

τ([nr]) = [ns], ∀ n ∈ N, τ = τ−1,

is a well-defined involution of N. If M is the multiset of differences ±{[ns]−
[nr] : n ∈ N}, then τ = πM

g . M has asymptotic density equal to (s − r)−1.

Proof : That τ is a well-defined permutation of N is Beatty’s theorem.
The second and third assertions are then obvious.

Proposition Let r < s be positive real numbers satisfying (7), and let
d := (s − r)−1. Then the following are equivalent

(i) r is rational
(ii) s is rational
(iii) d is rational of the form mn

m2−n2 for some positive rational m,n with
m > n.

Proof : Straightforward algebra exercise.

Notation : Let (r, s) be a Beatty pair, d := (s − r)−1. We denote by
Md the multisubset of N consisting of all differences [ns] − [nr], for n ∈ N.
We denote τd := π±Md

g .
As usual, for any positive integers m and p, we denote by Mm,p the

multisubset of Z consisting of p copies of each multiple of m and πm,p :=

π
Mm,p
g . We now denote by Mm,p the submultiset consisting of all the positive

integers in Mm,p and πm,p := π
±Mm,p
g . Thus

πm,p(n) + p = πm,p(n + p) for all n ∈ N.(7)

Since Mm,p has density p/m, there is obviously a close relation between
Mm,p and Mp/m, and thus between the permutations πm,p and τp/m. The
precise nature of this relationship is, however, a lot less obvious on the level
of permutations. It is the purpose of the present note to explore this matter.

We henceforth assume that m = 1.
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To simplify notation we fix a value of p. We set π := π1,p, Note that

r = rp =
(2p − 1) +

√

4p2 + 1

2p
, s = sp = rp +

1

p
=

(2p + 1) +
√

4p2 + 1

2p
.

Further notation : If X is an infinite multisubset of N we write X = (xk)
to denote the elements of X listed in increasing order, thus strictly increasing
order when X is an ordinary subset of N. The following four subsets of N

will be of special interest :

Aπ := {n : π(n) > n} := (ak),

Bπ := N\Aπ := (bk),

Aτ := {n : τ(n) > n} := (a∗k),

Bτ := N\Aτ := (b∗k).

Note that bk = π(ak), b∗k = τ(a∗k) for all k. We set

ǫk := (bk − ak) − (b∗k − a∗k) = (bk − b∗k) − (ak − a∗k).

Lemma 1 (i) For every n > 0,

|Mp ∩ [1, n]| = |M1,p ∩ [1, n]| + ǫ,

where ǫ ∈ {0, 1, ..., p − 1}.
(ii) ǫk ∈ {0, 1} for all k and if ǫk = 1 then k 6≡ 0 (mod p).
(iii) a∗k+1 − a∗k ∈ {1, 2} for all k > 0 and cannot equal one for any two
consecutive values of k.
(iv) b∗k+1 − b∗k ∈ {2, 3} for all k > 0.

Proof : (i) and (ii) are easy consequences of the various definitions. (iii)
follows from the fact that rp ∈ (3/2, 2) and (iv) from the fact that sp ∈ (2, 3).

Main Theorem For all k > 0, |ak − a∗k| ≤ p − 1.

Remark : We suspect, but have not yet been able to prove, that p − 1
is best-possible in this theorem.

Proof of Theorem : The proof is an induction on k, which is most easily
phrased as an argument by contradiction. Note that a1 = a∗1 = 1. Suppose
the theorem is false and consider the smallest k for which |a∗k − ak| ≥ p.
Thus k > 1.

Case I : ak − a∗k ≥ p.

Let ak − a∗k := p′ ≥ p. Let bl be the largest element of Bπ in [1, ak).
Then b∗l−p′+1 > a∗k and Lemma 1(iv) implies that b∗l − bl ≥ p′. But Lemma

1(ii) then implies that also a∗l − al ≥ p′ ≥ p. Since obviously l < k, this
contradicts the minimality of k.

Case II : a∗k − ak ≥ p.

Let a∗k − ak := p′ ≥ p. Let b∗l be the largest element of Bτ in [1, a∗k).
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Then bl−p′+1 > ak. Lemma 1(iv) implies that bl−p′+1 − b∗l−p′+1 ≥ p′ and

then Lemma 1(ii) implies that al−p′+1 − a∗l−p′+1 ≥ p′ − 1. The only way
we can avoid a contradiction already to the minimality of k is if all of the
following hold :

(a) p′ = p.
(b) b∗i − b∗i−1 = 2 for i = l, l − 1, ..., l − p + 2.
(c) l 6≡ −1 (mod p) and ǫl−p+1 = 1.

To simplify notation a little, set j := l− p+1. Now ǫj = 1 but parts (i) and
(ii) of Lemma 1 imply that we must have ǫj+t = 0 for some t ∈ {1, ..., p−1}.
Choose the smallest t for which ǫj+t = 0. Thus

b∗j − a∗j = b∗j+1 − a∗j+1 = · · · = b∗j+t−1 − a∗j+t−1 = (b∗j+t − a∗j+t) − 1.

From (b) it follows that

(8) a∗j+t − a∗j+t−1 = 1, a∗j+ξ − a∗j+ξ−1 = 2, ξ = 1, ..., t − 1.

Let b∗r be the largest element of Bτ in [1, a∗j ). Then from (9) it follows that

(9) b∗r+t − b∗r+t−1 = 3, b∗r+ξ − b∗r+ξ−1 = 2, ξ = 2, ..., t − 1.

Together with Lemma 1(iv) this implies that

(10) b∗r+p−1 − b∗r+1 ≥ 2p − 3.

But since a∗j = aj − (p − 1) we have that br+p−1 < aj. Together with (11)

this forces b∗r+p−1 − br+p−1 ≥ p, and then by Lemma 1(ii) we also have
a∗r+p−1 − ar+p−1 ≥ p. Since it is easily checked that r + p− 1 < k, we again
have a contradiction to the minimality of k, and the proof of the theorem is
complete.

This theorem implies Conjecture 5.1 of [HeLa]. Recall that the P -positions
of (p, 1)-Wythoff Nim are the pairs (n − 1, π1,p(n) − 1) for n ≥ 1.

Corollary With

L = Lp =
sp

rp
=

1 +
√

4p2 + 1

2p
, l = lp =

1

Lp
,

we have that, for every n ≥ 1,

π1,p(n) ∈ {⌊nL⌋ + ǫ, ⌊nl⌋ + ǫ : ǫ ∈ {−1, 0, 1, 2}} .(11)

Proof : We have π1,p(n) = n for n = 1, ..., p, and one checks that (12)
thus holds for these n. For n > p we have by (8) that

π1,p(n) = π(n − p) + p,(12)

where π = π1,p. There are two cases to consider, according as to whether
n − p ∈ Aπ or Bπ. We will show in the former case that π1,p(n) = ⌊nL⌋ + ǫ
for some ǫ ∈ {−1, 0, 1, 2}. The proof in the latter case is similar and will be
omitted.

So suppose n − p ∈ Aπ, say n − p = ak. Then

π(ak) = bk = ak + (b∗k − a∗k) + ǫk.(13)
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Moreover a∗k = ⌊krp⌋ and b∗k = ⌊ksp⌋, from which it is easy to check that

b∗k = a∗kL + δ, where δ ∈ (−1, 1).

Substituting into (14) and rewriting slightly, we find that

π(ak) = akL + (a∗k − ak)(L − 1) + δ + ǫk,

and hence by (13) that π1,p(n) = nL + γ where

γ = (a∗k − ak − p)(L − 1) + δ + ǫk.

By Lemma 1, ǫk ∈ {0, 1}. By the Main Theorem, |a∗k − ak| ≤ p − 1. It is
easy to check that (2p − 1)(L − 1) < 1. Hence γ ∈ (−2, 2), from which it
follows immediately that π1,p(n) − ⌊nL⌋ ∈ {−1, 0, 1, 2}. This completes the
proof.

Remark : As stated in Section 5 of [HeLa], computer calculations seem
to suggest that, in fact, (12) holds with just ǫ ∈ {0, 1}. So once again, the
results presented here may be possible to improve upon.
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