The \star -operator and Invariant Subtraction Games

Urban Larsson Mathematical Sciences Chalmers University of Technology and University of Gothenburg Göteborg, Sweden urban.larsson@chalmers.se

December 9, 2012

Abstract

An invariant subtraction game is a 2-player impartial game defined by a set of invariant moves (k-tuples of non-negative integers) \mathcal{M} . Given a position (another k-tuple) $\mathbf{x} = (x_1, \ldots, x_k)$, each option is of the form $(x_1 - m_1, \ldots, x_k - m_k)$, where $\mathbf{m} = (m_1, \ldots, m_k) \in \mathcal{M}$, and where $x_i - m_i \geq 0$, for all *i*. Two players alternate in moving and the player who moves last wins. The set of non-zero P-positions of the game \mathcal{M} defines the moves in the dual game \mathcal{M}^* . For example, in the game of (2-pile Nim)* a move consists in removing the same positive number of tokens from both piles. Our main results concern a double application of \star , the operation $\mathcal{M} \to (\mathcal{M}^*)^*$. We establish a fundamental 'convergence' result for this operation. Then, we give necessary and sufficient conditions for the relation $\mathcal{M} = (\mathcal{M}^*)^*$ to hold, as is the case for example with $\mathcal{M} = k$ -pile Nim.

Keywords: Dual game; Game convergence; Game reflexivity; Impartial game; Invariant subtraction game; *-operator

1 Introduction and terminology

An invariant subtraction game [DR10, LHF11] is a two-player impartial combinatorial game (see [BCG01] for a background on such games) de-

fined on a set of *positions* represented as k-tuples $\boldsymbol{x} = (x_1, \ldots, x_k)$, where $k \in \mathbb{N} = \{1, 2, \ldots\}$ and $x_i \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The move options are determined by a set, $\mathcal{M} \subset \mathbb{N}_0^k \setminus \{0\}$, of *invariant moves*. Each *option*, from a given position $\boldsymbol{x} = (x_1, \ldots, x_k)$, is of the form

$$\boldsymbol{x} \ominus \boldsymbol{m} = (x_1 - m_1, \dots, x_k - m_k),$$

where $\boldsymbol{m} = (m_1 \dots, m_k) \in \mathcal{M}$ and where $x_i \geq m_i$, for all *i*. The latter relation is also denoted $\boldsymbol{x} \succeq \boldsymbol{m}$ (and \succ means that strict inequality holds for at least one coordinate). The players alternate in moving and a player who cannot move loses. Clearly, this setting excludes the possibility of a draw game, but it includes many classical "take-away" games [G66, S70, Z96] played on a finite number of tokens, e.g. Nim [B1902], Wythoff Nim [W1907], the (one-pile) subtraction games in [BCG01].

Remark 1. Our setting is very similar to the "take-away" games in [G66]. However, since nowadays the term "take-away" often includes the possibility of a certain form of "move dependence" [S70, Z96] which we are not considering here, we prefer to use the terminology introduced in [DR10]. Also, we differ from [G66] in the definition of the ending condition of a game. Golomb's unique winning condition is a move to $\mathbf{0}$, so that in his setting many games are draw. (He also allows for the possibility of the vector $\mathbf{0}$ as a move.)

We identify an invariant subtraction game with its set of moves \mathcal{M} and call a position N if the player about to move (the next player) wins; otherwise it is P (the previous player wins). Hence, a position is P if and only if each of its options is N. A position \boldsymbol{x} is *terminal* if $\mathbf{0} \leq \boldsymbol{y} \leq \boldsymbol{x}$ implies $\boldsymbol{y} \notin \mathcal{M}$. Hence, each terminal position is P. Altogether this gives that the sets of Nand P-positions are recursively defined. We denote these sets by $\mathcal{N}(\mathcal{M})$ and $\mathcal{P}(\mathcal{M})$ respectively.

Suppose that $X \subseteq \mathbb{N}_0^k$. Then, we denote by X' the set $X \setminus \{\mathbf{0}\}$. Let \mathcal{M} be an invariant subtraction game. Then the *dual game* of \mathcal{M} is defined by $\mathcal{M}^* = \mathcal{P}(\mathcal{M})'$ and \mathcal{M} is *reflexive* if $\mathcal{M} = \mathcal{P}(\mathcal{M}^*)'$ that is if $\mathcal{M} = \mathcal{M}^{**}$, where \mathcal{M}^{**} stands for $(\mathcal{M}^*)^*$. Note that \mathcal{M}^* is reflexive whenever \mathcal{M} is.

A sequence of invariant subtraction games $(\mathcal{M}_i)_{i\in\mathbb{N}_0}$ converges if, for all $\boldsymbol{x} \in \mathbb{N}_0^k$, there is an $n_0 = n_0(\boldsymbol{x}) \in \mathbb{N}_0$ such that, for all $n \ge n_0$, for all $\boldsymbol{y} \preceq \boldsymbol{x}$, $\boldsymbol{y} \in \mathcal{M}_n$ if and only if $\boldsymbol{y} \in \mathcal{M}_{n_0}$. If $(\mathcal{M}_i)_{i\in\mathbb{N}_0}$ converges, then we can define the unique 'limit-game' of the sequence, denoted by $\lim_{i\in\mathbb{N}_0} \mathcal{M}_i$. For $i \in \mathbb{N}$,

let \mathcal{M}^i denote the game $(\mathcal{M}^{i-1})^*$ where $\mathcal{M}^0 = \mathcal{M}$ is an invariant subtraction game.

Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let $\mathcal{M}^0 = \mathcal{M}$ denote an invariant subtraction game. Then the sequence $(\mathcal{M}^{2i})_{i \in \mathbb{N}_0}$ converges.

Let $X \subseteq \mathbb{N}_0^k$. Then we denote by $\mathcal{D}(X)$ the set $\{ \boldsymbol{x} \ominus \boldsymbol{y} \succ \boldsymbol{0} \mid \boldsymbol{x}, \boldsymbol{y} \in X \}$.

Theorem 2. Let \mathcal{M} denote an invariant subtraction game. Then the following items are equivalent,

- (a) \mathcal{M} is reflexive,
- (b) $\mathcal{M} = \lim_{i \in \mathbb{N}_0} \mathcal{X}^{2i}$, for some invariant subtraction game $\mathcal{X} = \mathcal{X}^0$,
- (c) $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M}).$

In Example 1 and Figure 1 we demonstrate a simple application of Theorem 2 (c). In Example 2 and Figure 2 we show an example of a game which has a very simple structure, but for which we do not know whether reflexivity holds for any game resulting from a finite number of recursive applications of the \star -operator. (Due to computer simulations there appears to be many such games.) In Section 3 we study a consequence of Theorem 2, which relates to the type of question studied in [DR10, LHF11]. We give a partial resolution of the problem: given a set $S \subset \mathbb{N}_0^k$, is there an invariant subtraction game \mathcal{M} such that $\mathcal{P}(\mathcal{M}) = S$?

Example 1. In Figure 1, by Theorem 2 (c), \mathcal{M} is non-reflexive since $(1,2) \ominus (1,1) = (0,1) \in \mathcal{P}(\mathcal{M})$. Neither is the dual, \mathcal{M}^* , since (1,0) and (3,2) are moves, but $(3,2) \ominus (1,0) = (2,2) \in \mathcal{P}(\mathcal{M}^*)$. On the other hand $\mathcal{M}^{**} = \{(1,1)(2,2)\}$ is reflexive, since $(2,2) \ominus (1,1) = (1,1) \in \mathcal{M}^{**} \subset \mathcal{N}(\mathcal{M}^{**})$. Hence \mathcal{M}^n is reflexive for all $n \geq 2$.

Example 2. In Figure 2, notice that $(3,5) \ominus (2,2) = (1,3) \in \mathcal{P}(\mathcal{M})$, so that by Theorem 2 (c), \mathcal{M} is non-reflexive (as is also clear by the figures). However, due to these experimental results, $\mathcal{M}^n \cap \{(i,j) \mid i, j \in \{0,1,\ldots,100\}$ is identical for n = 8 and n = 10 and hence, for all even $n \ge 8$ (and similarly for all odd $n \ge 9$). Of course, by Theorem 1, we get that $\lim \mathcal{M}^{2i}$ exists. However, we do not know whether there exists an $n \ge 8$ such that $\mathcal{M}^n = \lim \mathcal{M}^{2i}$ (see also Question 2 on page 14).

Figure 1: The figures illustrate three recursive applications of the \star -operator on $\mathcal{M} = \{(1, 1), (1, 2)\}$ (for positions with coordinates less than 20). In the upper left figure the green squares represent the two moves in \mathcal{M} and the repetitive blue pattern its (initial) set of P-positions; the upper right figure illustrates the repetitive patterns in \mathcal{M}^{\star} with its (finite) set of P-positions, and so on.

2 Convergence

Let us begin by proving Theorem 1. The first item in the next lemma is also proved in [LHF11].

Lemma 1 ([LHF11]). Let \mathcal{M} denote an invariant subtraction game. Then

- (a) $\mathcal{P}(\mathcal{M}) \cap \mathcal{M} = \emptyset$,
- (b) $\mathcal{M}^* \cap \mathcal{M} = \emptyset$, and
- (c) $\mathcal{P}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star}) = \{\mathbf{0}\}.$

Figure 2: The upper left figure represents the invariant subtraction game $\mathcal{M} = \{(2,2), (3,5), (5,3)\}$. The following figures illustrate 10 recursive applications of the \star -operator on this game (for coordinates less than 100).

Proof. Let $m \in \mathcal{M}$ and note that $m \ominus m = \mathbf{0} \in \mathcal{P}(\mathcal{M})$, which gives $m \in \mathcal{N}(\mathcal{M})$. This proves (a). By the definition of the *-operator we have that $\mathcal{M}^* = \mathcal{P}(\mathcal{M})'$. Hence (a) gives (b) and (c).

The next lemma concerns consequences of Lemma 1 for the $\star\star$ -operator.

Lemma 2. Let \mathcal{M} denote an invariant subtraction game.

- (a) Suppose that $x \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$. Then $x \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$.
- (b) Suppose that $\mathbf{0} \prec \mathbf{x} \in \mathbb{N}_0^k$ is such that, for all $\mathbf{m} \prec \mathbf{x}$, $\mathbf{m} \in \mathcal{M}$ if and only if $\mathbf{m} \in \mathcal{M}^{\star\star}$. Then

$$\boldsymbol{x} \notin \mathcal{M}^{\star\star} \setminus \mathcal{M}. \tag{1}$$

Proof. Assume that the hypothesis of item (a) holds. Then, since $\boldsymbol{x} \in \mathcal{M}$, by Lemma 1 (a), $\boldsymbol{x} \notin \mathcal{P}(\mathcal{M})$, so that $\boldsymbol{x} \notin \mathcal{M}^*$. Also, since $\boldsymbol{x} \notin \mathcal{M}^{**}$, by definition of \star , we get that $\boldsymbol{x} \in \mathcal{N}(M^*)$.

For (b), suppose that the negation of (1) holds, that is that $\boldsymbol{x} \in \mathcal{M}^{\star\star} \setminus \mathcal{M}$. Then

$$\boldsymbol{x} \in \mathcal{P}(\mathcal{M}^{\star})',\tag{2}$$

which, by Lemma 1 (c), gives $\boldsymbol{x} \notin \mathcal{P}(\mathcal{M})$. Altogether, we get that $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}) \setminus \mathcal{M}$. Then, by definition of N, there is a move, say $\boldsymbol{m} \in \mathcal{M}$, with $\boldsymbol{m} \prec \boldsymbol{x}$, such that

$$oldsymbol{y} = oldsymbol{x} \ominus oldsymbol{m} \in \mathcal{P}(\mathcal{M})' = \mathcal{M}^{\star}.$$

By the assumption in the lemma we have that $\boldsymbol{m} \in \mathcal{M}^{\star\star} = \mathcal{P}(\mathcal{M}^{\star})'$. Hence, $\boldsymbol{m} = \boldsymbol{x} \ominus \boldsymbol{y}$ is a P-position in \mathcal{M}^{\star} and, since $\boldsymbol{y} \in \mathcal{M}^{\star}$, \boldsymbol{x} is an N-position in \mathcal{M}^{\star} , which contradicts (2).

Proof (of Theorem 1). Let \mathcal{M} denote an invariant subtraction game. Suppose that

$$\boldsymbol{x} \in \mathbb{N}_0^k \setminus \{\boldsymbol{0}\} \tag{3}$$

is such that, for all $\boldsymbol{y} \prec \boldsymbol{x}$,

$$\boldsymbol{y} \in \mathcal{M}$$
 if and only if $\boldsymbol{y} \in \mathcal{M}^{\star\star}$. (4)

Then clearly

$$\boldsymbol{y} \in \mathcal{P}(\mathcal{M})$$
 if and only if $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^{\star\star})$, (5)

so that, by definition of \star ,

$$\boldsymbol{y} \in \mathcal{M}^{\star}$$
 if and only if $\boldsymbol{y} \in \mathcal{M}^3$ (6)

and hence

$$\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^*)$$
 if and only if $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^3)$. (7)

Therefore, a repeated application of \star gives

$$oldsymbol{y} \in \mathcal{M}^{2i}$$
 if and only if $oldsymbol{y} \in \mathcal{M}^{2i+2}$

and also

$$\boldsymbol{y} \in \mathcal{M}^{2i+1}$$
 if and only if $\boldsymbol{y} \in \mathcal{M}^{2i+3}$,

for all $i \in \mathbb{N}_0$.

Suppose that \boldsymbol{x} is of the form in (3) and (4). Then, by the definition of convergence, it suffices to demonstrate that the minimum value i = i(x) for which

$$\boldsymbol{x} \in \mathcal{M}^{2i}$$
 if and only if $\boldsymbol{x} \in \mathcal{M}^{2i+2}$ (8)

is bounded. Precisely, we will show that i = 1 suffices, which means that to satisfy (8), at most 2 iterations of $\star\star$ is needed, for each position which satisfies the requirements of \boldsymbol{x} in (4). We then get that, for any game \mathcal{M} and any position \boldsymbol{x} , it suffices to take $n_0 = 2 \prod_{i=1}^{k} x_i$ in the definition of convergence.

We have four cases,

(A)
$$\boldsymbol{x} \in \mathcal{N}(\mathcal{M}) \cap \mathcal{N}(\mathcal{M}^{\star\star}),$$

(B)
$$\boldsymbol{x} \in \mathcal{P}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star\star}),$$

(C)
$$\boldsymbol{x} \in \mathcal{N}(\mathcal{M}) \cap \mathcal{P}(\mathcal{M}^{\star\star})$$
 or

(D)
$$\boldsymbol{x} \in \mathcal{P}(\mathcal{M}) \cap \mathcal{N}(\mathcal{M}^{\star\star}).$$

At first, notice that (B) together with Lemma 1 (a) implies $\boldsymbol{x} \notin \mathcal{M} \cup \mathcal{M}^{\star\star}$ (which gives i = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a) twice, since $\boldsymbol{x} \in \mathcal{P}(\mathcal{M})' = \mathcal{M}^{\star}$, we get $\boldsymbol{x} \notin \mathcal{M}$ and $\boldsymbol{x} \notin \mathcal{P}(\mathcal{M}^{\star})' = \mathcal{M}^{\star\star}$ (which again gives i = 0 in (8)).

It remains to investigate case (A) and (C).

Case (A): By Lemma 2 (b), we have that $\boldsymbol{x} \notin \mathcal{M}^{\star\star} \setminus \mathcal{M}$. Therefore, we may assume that

$$\boldsymbol{x} \in \mathcal{M} \setminus \mathcal{M}^{\star\star} \tag{9}$$

since otherwise we are done. By Lemma 2 (a), this gives that

$$\boldsymbol{x} \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}. \tag{10}$$

Hence, by definition of N in \mathcal{M}^* , we get that there is a position $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^*)'$ such that

$$\boldsymbol{m} = \boldsymbol{x} \ominus \boldsymbol{y} \in \mathcal{M}^{\star}. \tag{11}$$

By (6) this implies that $\boldsymbol{m} \in \mathcal{M}^3$ and by (7) that $\boldsymbol{y} \in \mathcal{P}(\mathcal{M}^3)$. Thus, by definition of P in \mathcal{M}^3 , the equality in (11) implies that $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}^3)$. Hence, by the definition of the \star -operator, we have that $\boldsymbol{x} \notin \mathcal{M}^4$, which, by the assumption (9), suffices for convergence.

Case (C): Since $\boldsymbol{x} \in \mathcal{N}(\mathcal{M})$, the definition of \star gives $\boldsymbol{x} \notin \mathcal{M}^{\star}$. Hence, by $\boldsymbol{x} \in \mathcal{P}(\mathcal{M}^{\star\star})$ and Lemma 1 (c), since $\boldsymbol{x} \succ \boldsymbol{0}$, we get that $\boldsymbol{x} \notin \mathcal{P}(\mathcal{M}^{\star})$ and thus $\boldsymbol{x} \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$. As in the proof of (A), from (10) onwards, this gives that $\boldsymbol{x} \notin \mathcal{M}^{4}$. Also, Lemma 1 (a), gives that $\boldsymbol{x} \notin \mathcal{M}^{\star\star}$, which proves convergence.

3 Reflexivity

In this section we discuss criteria for reflexivity of a game. We begin by proving Theorem 2. Let us restate it.

Theorem 2. Let \mathcal{M} denote an invariant subtraction game. Then the following items are equivalent.

- (a) \mathcal{M} is reflexive,
- (b) $\mathcal{M} = \lim_{i \in \mathbb{N}_0} \mathcal{X}^{2i}$, for some invariant subtraction game $\mathcal{X} = \mathcal{X}^0$,
- (c) $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M}).$

Proof. If $\mathcal{M} = \mathcal{M}^{\star\star}$ then $\mathcal{M}^{2i} = \mathcal{M}^{2i+2}$, for all $i \ge 0$, so that $\lim \mathcal{M}^{2i} = \mathcal{M}$. If $\mathcal{M} = \lim \mathcal{M}^{2i}$ exists, then $\mathcal{M}^{\star\star} = (\lim \mathcal{M}^{2i})^{\star\star} = \lim \mathcal{M}^{2i} = \mathcal{M}$. Hence, it remains to prove that \mathcal{M} is reflexive if and only if $D(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M})$.

" \Rightarrow ": Suppose that \mathcal{M} is reflexive. Then, we have to prove that $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M})$. Suppose, on the contrary, that there are distinct $m_1, m_2 \in \mathcal{M}$ such that

$$\boldsymbol{m}_1 \ominus \boldsymbol{m}_2 = \boldsymbol{x} \in \mathcal{P}(\mathcal{M})'.$$
 (12)

Then, by definition of \star ,

$$\boldsymbol{x} \in \mathcal{M}^{\star}.$$
 (13)

Also, by reflexivity, we get that $\{m_1, m_2\} \subset \mathcal{M}^{\star\star} = \mathcal{P}(\mathcal{M}^{\star})'$. But, by (12) and (13), this means that there is a move from a P-position to another P-position in \mathcal{M}^{\star} , which is impossible.

" \Leftarrow ": Suppose that $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M})$ but $\mathcal{M} \neq \mathcal{M}^{\star\star}$. Then there is some least $\boldsymbol{m} \in (\mathcal{M} \setminus \mathcal{M}^{\star\star}) \cup (\mathcal{M}^{\star\star} \setminus \mathcal{M})$, which, by Lemma 2 (b), gives $\boldsymbol{m} \in \mathcal{M} \setminus \mathcal{M}^{\star\star}$. By Lemma 2 (a), we get $\boldsymbol{m} \in \mathcal{N}(\mathcal{M}^{\star}) \setminus \mathcal{M}^{\star}$. Then, by definition of N in \mathcal{M}^{\star} , there is an $\boldsymbol{x} \in \mathcal{M}^{\star}$ such that

$$\boldsymbol{m} \ominus \boldsymbol{x} = \boldsymbol{y} \in \mathcal{P}(\mathcal{M}^{\star})'.$$
 (14)

Then, by definition of \star , we get $\boldsymbol{y} \in \mathcal{M}^{\star\star}$ and so, by minimality of \boldsymbol{m} , $\boldsymbol{y} \in \mathcal{M} \cap \mathcal{M}^{\star\star}$, so that both \boldsymbol{m} and \boldsymbol{y} are moves in \mathcal{M} . But then (14) together with the definition of \boldsymbol{x} and the \star -operator give $\boldsymbol{m} \ominus \boldsymbol{y} = \boldsymbol{x} \in \mathcal{P}(\mathcal{M})$, which contradicts $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{N}(\mathcal{M})$.

By Theorem 2 (c), one never needs to compute $\mathcal{P}(\mathcal{M}^*)$ to decide whether \mathcal{M} is reflexive or not. Sometimes a very incomplete understanding of the winning strategy $\mathcal{P}(\mathcal{M})$ suffices. Namely, to disprove reflexivity of \mathcal{M} it suffices to find a single P-position $\boldsymbol{x} \succ \boldsymbol{0}$ which connects any two moves $\boldsymbol{m}_1, \boldsymbol{m}_2 \in \mathcal{M}$ in the sense that $\boldsymbol{x} = \boldsymbol{m}_1 \ominus \boldsymbol{m}_2$. If \mathcal{M} were reflexive this would imply $\boldsymbol{m}_1, \boldsymbol{m}_2 \in \mathcal{M}^{**} = \mathcal{P}(\mathcal{M}^*)'$, with $\boldsymbol{x} \in \mathcal{P}(\mathcal{M})' = \mathcal{M}^*$, which is impossible. See also Example 4. On the other hand, to prove reflexivity, it suffices to find some subset $X \subseteq \mathcal{N}(\mathcal{M})$ such that $\mathcal{D}(\mathcal{M}) \subseteq X$ holds.

In particular, if we can take $X = \mathcal{M}$ we obtain very simple reflexivity properties. Namely, whenever $\mathcal{D}(\mathcal{M}) \subseteq \mathcal{M}$, the game \mathcal{M} is 'trivially' reflexive, that is, for this case we do not even need to study $\mathcal{P}(\mathcal{M})$ to establish reflexivity.

Let $X \subseteq \mathbb{N}_0^k$. Then the set X is

- subtractive if, for all $\boldsymbol{x}, \boldsymbol{y} \in X$, with $\boldsymbol{x} \prec \boldsymbol{y}, \boldsymbol{y} \ominus \boldsymbol{x} \in X$.
- a *lower ideal* if, for all $y \in X$, $x \prec y$ implies $x \in X$. (Hence the set of terminal P-positions of a given invariant subtraction game constitutes a lower ideal.)

• an *anti-chain*, if all distinct pairs $x, y \in X$ are unrelated, that is $x \leq y$ implies x = y.

We have the following corollary of Theorem 2 (see also Figure 3 for an application of (a)).

Corollary 1. The invariant subtraction game \mathcal{M} is reflexive if, regarded as a set,

- (a) \mathcal{M} is subtractive,
- (b) \mathcal{M} is a lower ideal,
- (c) $\mathcal{M} = \{(x, 0, \dots, 0), (0, x, 0, \dots, 0), \dots, (0, \dots, 0, x) \in \mathbb{N}_0^k \mid x \in \mathbb{N}\}, \text{ that is } \mathcal{M} \text{ represents the classical game of } k\text{-pile Nim } [B1902],$
- (d) \mathcal{M} is an anti-chain, or
- (e) $\mathcal{M} \in \{\emptyset, \{m\}\}\)$, that is \mathcal{M} consists of at most a single move.

Proof. For (a), notice that

$$\mathcal{D}(\mathcal{M}) = \{ \boldsymbol{m}_1 \ominus \boldsymbol{m}_2 \succ \boldsymbol{0} \mid \boldsymbol{m}_1, \boldsymbol{m}_2 \in \mathcal{M} \} \subseteq \mathcal{M} \subseteq \mathcal{N}(\mathcal{M}),$$

which, by Theorem 2, gives the claim. Then, the inclusions of families of games $\{\mathcal{M}_e\} \subseteq \{\mathcal{M}_d\} \subseteq \{\mathcal{M}_a\}$ and $\{\mathcal{M}_c\} \subseteq \{\mathcal{M}_b\} \subseteq \{\mathcal{M}_a\}$ prove the corollary, where \mathcal{M}_i denotes the game given by the set \mathcal{M} as in item (i). \Box

Example 3. In Figure 1, $\mathcal{M}^{\star\star} = \{(1,1), (2,2)\}$ is subtractive and hence, by Corollary 1, reflexive, but $\mathcal{M} = \{(1,1), (1,2)\}$ is neither. For another example, the invariant subtraction game $\mathcal{M} = \{(1,1), (2,2), (0,8), (8,0)\}$ is subtractive and hence reflexive. Hence its dual game $\mathcal{M}^{\star} = \mathcal{P}(\mathcal{M})'$ is also reflexive (but not subtractive). Figure 3 represents the first few moves of $\mathcal{M}^{\star} = \{(1,1), (2,2), (0,8), (8,0)\}^{\star}$. In spite of the simplicity of the game \mathcal{M} , the P-positions seem to have a very complex structure (in the sense of [F04]). It seems to be a-periodic in general, but asymptotically periodic for each fixed x-coordinate (or y-coordinate), but we do not understand these patterns yet. See also the final section for a comment regarding undecidability of games with a finite number of moves.

We believe that there are many more interesting applications of Theorem 2. Let us begin with two of them.

Figure 3: The dual game \mathcal{M}^* for the invariant subtraction game $\mathcal{M} = \{(1,1), (2,2), (0,8), (8,0)\}.$

3.1 A consequence of reflexivity

Given a 'candidate' set $\mathbf{0} \in S \subset \mathbb{N}_0^k$ of P-positions, is there an invariant subtraction game \mathcal{M} such that $\mathcal{P}(\mathcal{M}) = S$? This type of question was introduced in [DR10], together with a challenging conjecture on a family of sets $S \subset \mathbb{N}_0^2$ defined by a certain class of increasing sequences of positive integers. (The conjecture was resolved in [LHF11].) As a consequence of Theorem 2 (and Corollary 1), we are able to shed some new light on this type of question for general sets S.

Corollary 2. Let $\mathbf{0} \in S \subset \mathbb{N}_0^k$, $k \in \mathbb{N}$. If the invariant subtraction game S' is reflexive, so that, by Theorem 2,

$$\mathcal{D}(S) \subseteq \mathcal{N}(S'),\tag{15}$$

then there is an invariant subtraction game \mathcal{M} satisfying

$$\mathcal{P}(\mathcal{M}) = S. \tag{16}$$

Specifically, one such game \mathcal{M} is given by the recursive construction which defines the set of P-positions of the invariant subtraction game S'.

Proof. Suppose that (15) holds and take $\mathcal{M} = \mathcal{P}(S')' = (S')^*$. Then, since $S' = (S')^{**}$, $\mathcal{P}(\mathcal{M})' = \mathcal{P}((S')^*)' = (S')^{**} = S'$ gives the claim.

It is easy to find sets S which do not satisfy (16) for any \mathcal{M} (and where the invariant subtraction game S' is non-reflexive). See also [DR10, LHF11] and [G66, Theorem 3.2] for related results.

Example 4. Let $S' = \{(1,1), (1,2)\}$ (see also Example 1 and Figure 1). Then $\mathcal{D}(S') = \{(0,1)\} \subset \{(0,x) \mid x \in \mathbb{N}_0\} \subset \mathcal{P}(S')$ so that reflexivity of S' does not hold. Further, for this choice of S, there is no invariant subtraction game \mathcal{M} which satisfies (16). Indeed, by the definition of N, since (0,1) is not a (candidate) P-position, it has to be a move in \mathcal{M} . But this contradicts the definition of P since $(1,2) \ominus (1,1) = (0,1)$.

On the other hand, Figure 1 also illustrates that a non-reflexive game, namely \mathcal{M}^* , might produce a reflexive $S' = \mathcal{M}^{**}$ (Wythoff Nim is another such example [LHF11]), see also Question 2. However it is not necessary that S' is reflexive for (16) to hold. A non-reflexive \mathcal{M} can produce a non-reflexive S' as we have seen in Figure 1 (take $S' = \mathcal{M}^*$) and also in Figure 2 (take $S' = \mathcal{M}^i$, many i).

Let us give another example of a non-reflexive game S' which satisfies (16). We believe that strictly more than two P-positions are needed for such examples to hold.

Example 5. Suppose that $S' = \{(0,1), (1,0), (1,1), (3,3)\}$. Then Corollary 1 does not give any information on whether there is an invariant subtraction game \mathcal{M} such that (16) holds. Namely we have that $(2,2) \in \mathcal{D}(S) \cap \mathcal{P}(S')$, which contradicts (15) (and thus reflexivity of S'). However, by inspection one finds that $S \subset \mathcal{P}(\mathcal{Q})$ for $\mathcal{Q} = \{(0,2), (2,0), (1,2), (2,1)\}$. Then, in spite of the observation that S' is non-reflexive, this gives the existence of a game \mathcal{M} satisfying (16). (For example take $\mathcal{M} = \mathcal{Q} \cup \{(x,y), (y,x) \mid x \geq 4\}$.)

3.2 Decidability and reflexivity

A very simple configuration of moves, e.g. as in Figure 3, can have a very complex set of P-positions (dual game). In fact, suppose the invariant sub-traction game $\mathcal{M} \subset \mathbb{N}_0^k$ has finite cardinality. Then we wonder whether it is

algorithmically decidable if a given k-tuple ($\succ 0$) appears as a difference of any two P-positions in \mathcal{M} ; that is if the set of P-position changes if we 'modify' an invariant subtraction game \mathcal{M} and rather play $\mathcal{M} \cup \{m\}, m \in \mathbb{N}_0^k$. (In [LW] we prove undecidability in a related sense for a similar class of invariant games.)

However, by Theorem 2, since $\mathcal{D}(\mathcal{M})$ is finite whenever \mathcal{M} is, it takes at most a finite computation to decide whether \mathcal{M} is reflexive or not. Hence we get another corollary of Theorem 2.

Corollary 3. Suppose that the number of moves in the invariant subtraction game \mathcal{M} is finite. Then the problem of determining whether the game \mathcal{M} is reflexive or not is algorithmically decidable.

4 Discussion

In this paper we have presented some general territory of invariant subtraction games and the \star -operator. The issues of convergence of the $\star\star$ -operator have been completely resolved, but we have not found any explicit formula for a 'non-trivial limit-game'. By 'trivial limit-game' we here mean a game H which satisfies $H = \mathcal{M}^{2n} = \lim \mathcal{M}^{2i}$ for some $n \in \mathbb{N}$ and some game \mathcal{M} .

Problem 1. Prove or disprove that all limit games are trivial. In the latter case give an explicit formula for a non-trivial limit game without the mention of a limit of a sequence of games.

Our next question is a continuation of the examples in Section 3.

Question 1. Examples 4 and 5 suggest a classification of 'non-reflexive' sets $S' \subset \mathbb{N}_0^k$, that is, by Theorem 2, sets for which there exists a pair $\mathbf{x}, \mathbf{y} \in S'$ such that $\mathbf{x} \ominus \mathbf{y} \in \mathcal{P}(S')'$. The first class should contain those sets S for which there exist an invariant subtraction game \mathcal{M} such that $\mathcal{P}(\mathcal{M}) = S$ and the second, those for which there is no such game. Suppose there exists a pair $\mathbf{x}, \mathbf{y} \in S'$ such that the only possible 'candidate move' from $\mathbf{m} = \mathbf{x} \ominus \mathbf{y}$ to another position in S is to **0**. Then, we are in Example 4 and so in the second class. On the other hand, Example 5 gives an example when there is no such pair \mathbf{x}, \mathbf{y} . But suppose that the positions (2,3) and (3,2) are included to the set S in Example 5. Then, neither the move (2,2) nor the moves (1,2) and (2,1) may be included to the candidate set \mathcal{M} , and hence S would have belonged to the second class. Is there an explicit and exhaustive classification which settles the type of question suggested by Example 4 and 5?

In Figure 1 we gave an example of a non-reflexive game with a non-reflexive dual, but where the dual of the dual is reflexive. The example of the 'symmetric' game $\mathcal{M} = \{(2,2), (3,5), (5,3)\}$ from Figure 2 contains only three moves, but we were not able to determine whether there is an n such that \mathcal{M}^n is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for each $n \in \mathbb{N}$, a game \mathcal{M} such that \mathcal{M}^n is reflexive, but \mathcal{M}^{n-1} is not?

We do not know if the answer to Question 2 is positive for any $n \ge 3$.

References

- [BCG01] E. R. Berlekamp, J. H. Conway, R. K. Guy, Winning ways, 1-2 Academic Press, London (1982). Second edition, 1–4. A. K. Peters, Wellesley/MA (2001/03/03/04).
- [B1902] C. L. Bouton, Nim, A Game with a Complete Mathematical Theory The Annals of Mathematics, 2nd Ser., Vol. 3, No. 1/4. (1901 - 1902), pp. 35–39.
- [DR10] E. Duchêne and M. Rigo, Invariant Games, Theoret. Comput. Sci., Vol. 411, 34-36 (2010), pp. 3169–3180
- [F04] A. S. Fraenkel, Complexity, appeal and challenges of combinatorial games, Proc. of Dagstuhl Seminar "Algorithmic Combinatorial Game Theory", *Theoret. Comp. Sci.* **313** (2004) 393–415, special issue on Algorithmic Combinatorial Game Theory.
- [G66] S. W. Golomb, A mathematical investigation of games of "take-away". J. Combinatorial Theory 1 (1966) 443–458.
- [LHF11] U. Larsson, P. Hegarty, A. S. Fraenkel, Invariant and dual subtraction games resolving the Duchêne-Rigo Conjecture, *Theoret. Comp. Sci.* Vol. 412, 8-10 (2011) pp. 729–735.
- [LW] U. Larsson, J. Wästlund, From heaps of matches to undecidability of games, preprint.
- [S70] A. J. Schwenk, "Take-Away Games", Fibonacci Quart. 8 (1970), 225– 234.

- [W1907] W.A. Wythoff, A modification of the game of Nim, Nieuw Arch. Wisk. 7 (1907) 199–202.
- [Z96] Michael Zieve, Take-Away Games, Games of No Chance, MSRI Publications, 29, (1996) pp. 351–361