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Abstract

An invariant subtraction game is a 2-player impartial game defined
by a set of invariant moves (k-tuples of non-negative integers) M.
Given a position (another k-tuple) x = (x1, . . . , xk), each option is of
the form (x1 −m1, . . . , xk −mk), where m = (m1, . . . ,mk) ∈M, and
where xi − mi ≥ 0, for all i. Two players alternate in moving and
the player who moves last wins. The set of non-zero P-positions of
the game M defines the moves in the dual game M?. For example,
in the game of (2-pile Nim)? a move consists in removing the same
positive number of tokens from both piles. Our main results concern
a double application of ?, the operation M → (M?)?. We establish
a fundamental ‘convergence’ result for this operation. Then, we give
necessary and sufficient conditions for the relation M = (M?)? to
hold, as is the case for example with M = k-pile Nim.

Keywords: Dual game; Game convergence; Game reflexivity; Im-
partial game; Invariant subtraction game; ?-operator

1 Introduction and terminology

An invariant subtraction game [DR10, LHF11] is a two-player impartial
combinatorial game (see [BCG01] for a background on such games) de-
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fined on a set of positions represented as k-tuples x = (x1, . . . , xk), where
k ∈ N = {1, 2, . . .} and xi ∈ N0 = N∪{0}. The move options are determined
by a set, M ⊂ Nk

0 \ {0}, of invariant moves. Each option, from a given
position x = (x1, . . . , xk), is of the form

x	m = (x1 −m1, . . . , xk −mk),

where m = (m1 . . . ,mk) ∈ M and where xi ≥ mi, for all i. The latter
relation is also denoted x � m (and � means that strict inequality holds
for at least one coordinate). The players alternate in moving and a player
who cannot move loses. Clearly, this setting excludes the possibility of a
draw game, but it includes many classical “take-away” games [G66, S70, Z96]
played on a finite number of tokens, e.g. Nim [B1902], Wythoff Nim [W1907],
the (one-pile) subtraction games in [BCG01].

Remark 1. Our setting is very similar to the “take-away” games in [G66].
However, since nowadays the term “take-away” often includes the possibility
of a certain form of “move dependence” [S70, Z96] which we are not con-
sidering here, we prefer to use the terminology introduced in [DR10]. Also,
we differ from [G66] in the definition of the ending condition of a game.
Golomb’s unique winning condition is a move to 0, so that in his setting
many games are draw. (He also allows for the possibility of the vector 0 as
a move.)

We identify an invariant subtraction game with its set of moves M and
call a position N if the player about to move (the next player) wins; otherwise
it is P (the previous player wins). Hence, a position is P if and only if each
of its options is N. A position x is terminal if 0 � y � x implies y 6∈ M.
Hence, each terminal position is P. Altogether this gives that the sets of N-
and P-positions are recursively defined. We denote these sets by N (M) and
P(M) respectively.

Suppose that X ⊆ Nk
0. Then, we denote by X ′ the set X \ {0}. Let M

be an invariant subtraction game. Then the dual game of M is defined by
M? = P(M)′ andM is reflexive ifM = P(M?)′ that is ifM =M??, where
M?? stands for (M?)?. Note that M? is reflexive whenever M is.

A sequence of invariant subtraction games (Mi)i∈N0 converges if, for all
x ∈ Nk

0, there is an n0 = n0(x) ∈ N0 such that, for all n ≥ n0, for all y � x,
y ∈ Mn if and only if y ∈ Mn0 . If (Mi)i∈N0 converges, then we can define
the unique ‘limit-game’ of the sequence, denoted by limi∈N0Mi. For i ∈ N,
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letMi denote the game (Mi−1)? whereM0 =M is an invariant subtraction
game.

Let us state our two main results, proved in Section 2 and 3 respectively.

Theorem 1. Let M0 =M denote an invariant subtraction game. Then the
sequence (M2i)i∈N0 converges.

Let X ⊆ Nk
0. Then we denote by D(X) the set {x	 y � 0 | x,y ∈ X}.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent,

(a) M is reflexive,

(b) M = limi∈N0 X 2i, for some invariant subtraction game X = X 0,

(c) D(M) ⊆ N (M).

In Example 1 and Figure 1 we demonstrate a simple application of Theo-
rem 2 (c). In Example 2 and Figure 2 we show an example of a game which
has a very simple structure, but for which we do not know whether reflexivity
holds for any game resulting from a finite number of recursive applications of
the ?-operator. (Due to computer simulations there appears to be many such
games.) In Section 3 we study a consequence of Theorem 2, which relates to
the type of question studied in [DR10, LHF11]. We give a partial resolution
of the problem: given a set S ⊂ Nk

0, is there an invariant subtraction game
M such that P(M) = S?

Example 1. In Figure 1, by Theorem 2 (c),M is non-reflexive since (1, 2)	
(1, 1) = (0, 1) ∈ P(M). Neither is the dual, M?, since (1, 0) and (3, 2) are
moves, but (3, 2) 	 (1, 0) = (2, 2) ∈ P(M?). On the other hand M?? =
{(1, 1)(2, 2)} is reflexive, since (2, 2) 	 (1, 1) = (1, 1) ∈ M?? ⊂ N (M??).
Hence Mn is reflexive for all n ≥ 2.

Example 2. In Figure 2, notice that (3, 5)	 (2, 2) = (1, 3) ∈ P(M), so that
by Theorem 2 (c), M is non-reflexive (as is also clear by the figures). How-
ever, due to these experimental results, Mn ∩ {(i, j) | i, j ∈ {0, 1, . . . , 100}
is identical for n = 8 and n = 10 and hence, for all even n ≥ 8 (and sim-
ilarly for all odd n ≥ 9). Of course, by Theorem 1, we get that limM2i

exists. However, we do not know whether there exists an n ≥ 8 such that
Mn = limM2i (see also Question 2 on page 14).
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Figure 1: The figures illustrate three recursive applications of the ?-operator
on M = {(1, 1), (1, 2)} (for positions with coordinates less than 20). In the
upper left figure the green squares represent the two moves in M and the
repetitive blue pattern its (initial) set of P-positions; the upper right figure
illustrates the repetitive patterns in M? with its (finite) set of P-positions,
and so on.

2 Convergence

Let us begin by proving Theorem 1. The first item in the next lemma is also
proved in [LHF11].

Lemma 1 ([LHF11]). Let M denote an invariant subtraction game. Then

(a) P(M) ∩M = ∅,

(b) M? ∩M = ∅, and

(c) P(M) ∩ P(M?) = {0}.
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Figure 2: The upper left figure represents the invariant subtraction game
M = {(2, 2), (3, 5), (5, 3)}. The following figures illustrate 10 recursive ap-
plications of the ?-operator on this game (for coordinates less than 100).

Proof. Let m ∈ M and note that m 	m = 0 ∈ P(M), which gives
m ∈ N (M). This proves (a). By the definition of the ?-operator we have
that M? = P(M)′. Hence (a) gives (b) and (c). �

The next lemma concerns consequences of Lemma 1 for the ??-operator.

Lemma 2. Let M denote an invariant subtraction game.

(a) Suppose that x ∈M \M??. Then x ∈ N (M?) \M?.

(b) Suppose that 0 ≺ x ∈ Nk
0 is such that, for all m ≺ x, m ∈ M if and

only if m ∈M??. Then

x 6∈ M?? \M. (1)
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Proof. Assume that the hypothesis of item (a) holds. Then, since x ∈ M,
by Lemma 1 (a), x 6∈ P(M), so that x 6∈ M?. Also, since x 6∈ M??, by
definition of ?, we get that x ∈ N (M?).

For (b), suppose that the negation of (1) holds, that is that x ∈M??\M.
Then

x ∈ P(M?)′, (2)

which, by Lemma 1 (c), gives x 6∈ P(M). Altogether, we get that x ∈
N (M) \ M. Then, by definition of N, there is a move, say m ∈ M, with
m ≺ x, such that

y = x	m ∈ P(M)′ =M?.

By the assumption in the lemma we have that m ∈M?? = P(M?)′. Hence,
m = x	 y is a P-position in M? and, since y ∈ M?, x is an N-position in
M?, which contradicts (2). �

Proof (of Theorem 1). Let M denote an invariant subtraction game.
Suppose that

x ∈ Nk
0 \ {0} (3)

is such that, for all y ≺ x,

y ∈M if and only if y ∈M??. (4)

Then clearly

y ∈ P(M) if and only if y ∈ P(M??), (5)

so that, by definition of ?,

y ∈M? if and only if y ∈M3 (6)

and hence

y ∈ P(M?) if and only if y ∈ P(M3). (7)

Therefore, a repeated application of ? gives

y ∈M2i if and only if y ∈M2i+2
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and also

y ∈M2i+1 if and only if y ∈M2i+3,

for all i ∈ N0.
Suppose that x is of the form in (3) and (4). Then, by the definition of

convergence, it suffices to demonstrate that the minimum value i = i(x) for
which

x ∈M2i if and only if x ∈M2i+2 (8)

is bounded. Precisely, we will show that i = 1 suffices, which means that
to satisfy (8), at most 2 iterations of ?? is needed, for each position which
satisfies the requirements of x in (4). We then get that, for any game M
and any position x, it suffices to take n0 = 2

∏k
i=1 xi in the definition of

convergence.
We have four cases,

(A) x ∈ N (M) ∩N (M??),

(B) x ∈ P(M) ∩ P(M??),

(C) x ∈ N (M) ∩ P(M??) or

(D) x ∈ P(M) ∩N (M??).

At first, notice that (B) together with Lemma 1 (a) implies x 6∈ M∪M??

(which gives i = 0 in (8)). Similarly, for case (D), by using Lemma 1 (a)
twice, since x ∈ P(M)′ = M?, we get x 6∈ M and x 6∈ P(M?)′ = M??

(which again gives i = 0 in (8)).
It remains to investigate case (A) and (C).

Case (A): By Lemma 2 (b), we have that x 6∈ M?? \M. Therefore, we may
assume that

x ∈M \M?? (9)

since otherwise we are done. By Lemma 2 (a), this gives that

x ∈ N (M?) \M?. (10)
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Hence, by definition of N inM?, we get that there is a position y ∈ P(M?)′

such that

m = x	 y ∈M?. (11)

By (6) this implies that m ∈ M3 and by (7) that y ∈ P(M3). Thus, by
definition of P inM3, the equality in (11) implies that x ∈ N (M3). Hence,
by the definition of the ?-operator, we have that x 6∈ M4, which, by the
assumption (9), suffices for convergence.

Case (C): Since x ∈ N (M), the definition of ? gives x 6∈ M?. Hence, by
x ∈ P(M??) and Lemma 1 (c), since x � 0, we get that x 6∈ P(M?) and
thus x ∈ N (M?) \ M?. As in the proof of (A), from (10) onwards, this
gives that x 6∈ M4. Also, Lemma 1 (a), gives that x 6∈ M??, which proves
convergence. �

3 Reflexivity

In this section we discuss criteria for reflexivity of a game. We begin by
proving Theorem 2. Let us restate it.

Theorem 2. Let M denote an invariant subtraction game. Then the fol-
lowing items are equivalent.

(a) M is reflexive,

(b) M = limi∈N0 X 2i, for some invariant subtraction game X = X 0,

(c) D(M) ⊆ N (M).

Proof. IfM =M?? thenM2i =M2i+2, for all i ≥ 0, so that limM2i =M.
If M = limM2i exists, then M?? = (limM2i)?? = limM2i =M. Hence, it
remains to prove that M is reflexive if and only if D(M) ⊆ N (M).

“⇒”: Suppose that M is reflexive. Then, we have to prove that D(M) ⊆
N (M). Suppose, on the contrary, that there are distinct m1,m2 ∈M such
that

m1 	m2 = x ∈ P(M)′. (12)
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Then, by definition of ?,

x ∈M?. (13)

Also, by reflexivity, we get that {m1,m2} ⊂ M?? = P(M?)′. But, by (12)
and (13), this means that there is a move from a P-position to another P-
position in M?, which is impossible.

“⇐”: Suppose thatD(M) ⊆ N (M) butM 6=M??. Then there is some least
m ∈ (M\M??)∪ (M?? \M), which, by Lemma 2 (b), gives m ∈M\M??.
By Lemma 2 (a), we get m ∈ N (M?) \ M?. Then, by definition of N in
M?, there is an x ∈M? such that

m	 x = y ∈ P(M?)′. (14)

Then, by definition of ?, we get y ∈ M?? and so, by minimality of m,
y ∈ M ∩M??, so that both m and y are moves in M. But then (14) to-
gether with the definition of x and the ?-operator give m	y = x ∈ P(M),
which contradicts D(M) ⊆ N (M). �

By Theorem 2 (c), one never needs to compute P(M?) to decide whether
M is reflexive or not. Sometimes a very incomplete understanding of the
winning strategy P(M) suffices. Namely, to disprove reflexivity of M it
suffices to find a single P-position x � 0 which connects any two moves
m1,m2 ∈ M in the sense that x = m1 	m2. If M were reflexive this
would imply m1,m2 ∈ M?? = P(M?)′, with x ∈ P(M)′ = M?, which is
impossible. See also Example 4. On the other hand, to prove reflexivity, it
suffices to find some subset X ⊆ N (M) such that D(M) ⊆ X holds.

In particular, if we can take X = M we obtain very simple reflexivity
properties. Namely, whenever D(M) ⊆M, the gameM is ‘trivially’ reflex-
ive, that is, for this case we do not even need to study P(M) to establish
reflexivity.

Let X ⊆ Nk
0. Then the set X is

• subtractive if, for all x,y ∈ X, with x ≺ y, y 	 x ∈ X.

• a lower ideal if, for all y ∈ X, x ≺ y implies x ∈ X. (Hence the set of
terminal P-positions of a given invariant subtraction game constitutes
a lower ideal.)
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• an anti-chain, if all distinct pairs x,y ∈ X are unrelated, that is x � y
implies x = y.

We have the following corollary of Theorem 2 (see also Figure 3 for an
application of (a)).

Corollary 1. The invariant subtraction game M is reflexive if, regarded as
a set,

(a) M is subtractive,

(b) M is a lower ideal,

(c) M = {(x, 0, . . . , 0), (0, x, 0, . . . , 0), . . . , (0, . . . , 0, x) ∈ Nk
0 | x ∈ N}, that

is M represents the classical game of k-pile Nim [B1902],

(d) M is an anti-chain, or

(e) M∈ {∅, {m}}, that is M consists of at most a single move.

Proof. For (a), notice that

D(M) = {m1 	m2 � 0 |m1,m2 ∈M} ⊆M ⊆ N (M),

which, by Theorem 2, gives the claim. Then, the inclusions of families of
games {Me} ⊆ {Md} ⊆ {Ma} and {Mc} ⊆ {Mb} ⊆ {Ma} prove the
corollary, where Mi denotes the game given by the set M as in item (i). �

Example 3. In Figure 1, M?? = {(1, 1), (2, 2)} is subtractive and hence,
by Corollary 1, reflexive, but M = {(1, 1), (1, 2)} is neither. For another
example, the invariant subtraction game M = {(1, 1), (2, 2), (0, 8), (8, 0)} is
subtractive and hence reflexive. Hence its dual game M? = P(M)′ is also
reflexive (but not subtractive). Figure 3 represents the first few moves of
M? = {(1, 1), (2, 2), (0, 8), (8, 0)}?. In spite of the simplicity of the game M,
the P-positions seem to have a very complex structure (in the sense of [F04]).
It seems to be a-periodic in general, but asymptotically periodic for each fixed
x-coordinate (or y-coordinate), but we do not understand these patterns yet.
See also the final section for a comment regarding undecidability of games
with a finite number of moves.

We believe that there are many more interesting applications of Theo-
rem 2. Let us begin with two of them.
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Figure 3: The dual game M? for the invariant subtraction game M =
{(1, 1), (2, 2), (0, 8), (8, 0)}.

3.1 A consequence of reflexivity

Given a ‘candidate’ set 0 ∈ S ⊂ Nk
0 of P-positions, is there an invariant

subtraction game M such that P(M) = S? This type of question was
introduced in [DR10], together with a challenging conjecture on a family of
sets S ⊂ N2

0 defined by a certain class of increasing sequences of positive
integers. (The conjecture was resolved in [LHF11].) As a consequence of
Theorem 2 (and Corollary 1), we are able to shed some new light on this
type of question for general sets S.

Corollary 2. Let 0 ∈ S ⊂ Nk
0, k ∈ N. If the invariant subtraction game S ′

is reflexive, so that, by Theorem 2,

D(S) ⊆ N (S ′), (15)

then there is an invariant subtraction game M satisfying

P(M) = S. (16)
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Specifically, one such game M is given by the recursive construction which
defines the set of P-positions of the invariant subtraction game S ′.

Proof. Suppose that (15) holds and take M = P(S ′)′ = (S ′)?. Then, since
S ′ = (S ′)??, P(M)′ = P((S ′)?)′ = (S ′)?? = S ′ gives the claim. �

It is easy to find sets S which do not satisfy (16) for any M (and where
the invariant subtraction game S ′ is non-reflexive). See also [DR10, LHF11]
and [G66, Theorem 3.2] for related results.

Example 4. Let S ′ = {(1, 1), (1, 2)} (see also Example 1 and Figure 1).
Then D(S ′) = {(0, 1)} ⊂ {(0, x) | x ∈ N0} ⊂ P(S ′) so that reflexivity of S ′

does not hold. Further, for this choice of S, there is no invariant subtraction
game M which satisfies (16). Indeed, by the definition of N, since (0, 1) is
not a (candidate) P-position, it has to be a move in M. But this contradicts
the definition of P since (1, 2)	 (1, 1) = (0, 1).

On the other hand, Figure 1 also illustrates that a non-reflexive game,
namely M?, might produce a reflexive S ′ = M?? (Wythoff Nim is another
such example [LHF11]), see also Question 2. However it is not necessary that
S ′ is reflexive for (16) to hold. A non-reflexiveM can produce a non-reflexive
S ′ as we have seen in Figure 1 (take S ′ = M?) and also in Figure 2 (take
S ′ =Mi, many i).

Let us give another example of a non-reflexive game S ′ which satisfies
(16). We believe that strictly more than two P-positions are needed for such
examples to hold.

Example 5. Suppose that S ′ = {(0, 1), (1, 0), (1, 1), (3, 3)}. Then Corollary
1 does not give any information on whether there is an invariant subtraction
game M such that (16) holds. Namely we have that (2, 2) ∈ D(S) ∩ P(S ′),
which contradicts (15) (and thus reflexivity of S ′). However, by inspection
one finds that S ⊂ P(Q) for Q = {(0, 2), (2, 0), (1, 2), (2, 1)}. Then, in spite
of the observation that S ′ is non-reflexive, this gives the existence of a game
M satisfying (16). (For example take M = Q∪ {(x, y), (y, x) | x ≥ 4}.)

3.2 Decidability and reflexivity

A very simple configuration of moves, e.g. as in Figure 3, can have a very
complex set of P-positions (dual game). In fact, suppose the invariant sub-
traction game M⊂ Nk

0 has finite cardinality. Then we wonder whether it is
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algorithmically decidable if a given k-tuple (� 0) appears as a difference of
any two P-positions inM; that is if the set of P-position changes if we ‘mod-
ify’ an invariant subtraction gameM and rather playM∪{m}, m ∈ Nk

0. (In
[LW] we prove undecidability in a related sense for a similar class of invariant
games.)

However, by Theorem 2, since D(M) is finite wheneverM is, it takes at
most a finite computation to decide whether M is reflexive or not. Hence
we get another corollary of Theorem 2.

Corollary 3. Suppose that the number of moves in the invariant subtraction
game M is finite. Then the problem of determining whether the game M is
reflexive or not is algorithmically decidable.

4 Discussion

In this paper we have presented some general territory of invariant subtrac-
tion games and the ?-operator. The issues of convergence of the ??-operator
have been completely resolved, but we have not found any explicit formula
for a ‘non-trivial limit-game’. By ‘trivial limit-game’ we here mean a game
H which satisfies H =M2n = limM2i for some n ∈ N and some game M.

Problem 1. Prove or disprove that all limit games are trivial. In the latter
case give an explicit formula for a non-trivial limit game without the mention
of a limit of a sequence of games.

Our next question is a continuation of the examples in Section 3.

Question 1. Examples 4 and 5 suggest a classification of ‘non-reflexive’ sets
S ′ ⊂ Nk

0, that is, by Theorem 2, sets for which there exists a pair x,y ∈ S ′

such that x 	 y ∈ P(S ′)′. The first class should contain those sets S for
which there exist an invariant subtraction game M such that P(M) = S
and the second, those for which there is no such game. Suppose there exists
a pair x,y ∈ S ′ such that the only possible ‘candidate move’ from m = x	y
to another position in S is to 0. Then, we are in Example 4 and so in the
second class. On the other hand, Example 5 gives an example when there is
no such pair x,y. But suppose that the positions (2, 3) and (3, 2) are included
to the set S in Example 5. Then, neither the move (2, 2) nor the moves (1, 2)
and (2, 1) may be included to the candidate set M, and hence S would have
belonged to the second class. Is there an explicit and exhaustive classification
which settles the type of question suggested by Example 4 and 5?
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In Figure 1 we gave an example of a non-reflexive game with a non-
reflexive dual, but where the dual of the dual is reflexive. The example of
the ‘symmetric’ gameM = {(2, 2), (3, 5), (5, 3)} from Figure 2 contains only
three moves, but we were not able to determine whether there is an n such
that Mn is reflexive or not. This discussion leads us to our final question.

Question 2. Is there, for each n ∈ N, a game M such that Mn is reflexive,
but Mn−1 is not?

We do not know if the answer to Question 2 is positive for any n ≥ 3.
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