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Abstract

We relax the hypothesis of a recent result of A. S. Fraenkel and U.

Peled on certain complementary sequences of positive integers. The mo-

tivation is to understand to asymptotic behavior of the impartial game

of Maharaja Nim, an extension of the classical game of Wythoff Nim. In

the latter game, two players take turn in moving a single Queen of Chess

on a large board, attempting to be the first to put her in the lower left

corner, position (0, 0). Here, in addition to the classical rules, a player

may also move the Queen as the Knight of Chess moves, still taking into

consideration that, by moving no coordinate increases. We prove that

the second player’s winning positions are close to those of Wythoff Nim,

namely they are within a bounded distance to the half-lines, starting at

the origin, of slope
√
5+1
2

and
√
5−1
2

respectively. We encode the patterns

of the P-positions by means of a certain dictionary process, thus introduc-

ing a new method for analyzing games related to Wythoff Nim. Via Post’s

Tag productions, we also prove that, in general, such dictionary processes

are algorithmically undecidable. Keywords: Approximate linearity, com-

plementary sequences, dictionary process, impartial game, Wythoff Nim,

game complexity.
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1 Maharaja Nim

We introduce a 2-player combinatorial game called Maharaja Nim, an extension

of the well-known game of Wythoff Nim [Wy1907]. (The name Maharaja is

taken from a variation of Chess, “The Maharaja and the Sepoys”, [Fa].) Both

these games are impartial, that is, the set of move options are the same regardless

of whose turn it is. For a background on impartial games see [BCG].

We let N and N0 denote the positive and nonnegative integers respectively.

It is convenient to label our positions by ordered pairs of nonnegative integers.

Place a Queen of Chess on a given position (x, y), x, y ∈ N0, of a large (Chess)

board, with the position in the lower left corner the unique terminal position,

labeled (0, 0). In the game of Wythoff Nim, here denoted by W, the two players

move the Queen alternately as it moves in Chess, but with the restriction that,

by moving, no coordinate increases, see Figure 1. A player who cannot move,

because the position is (0, 0), loses. (This variation of Wythoff Nim is called

“Corner the Queen” and was invented by R. P. Isaacs in 1960.) In Maharaja

Nim, denoted by M, the rules are as in Wythoff Nim, except that the Queen

is exchanged for a Maharaja, a piece which may move both as the Queen and

the Knight of Chess, again, provided by moving no coordinate increases, see

Figure 1. Hence, for x, y ∈ N0, we get that, if (x, y) is a given position of Wythoff

Nim, then its options are of the forms (x, y− r), (x− s, y) and (x− t, y− t), for

0 < r ≤ y, 0 < s ≤ x and 0 < t ≤ min{x, y} respectively. For Maharaja Nim

the two options (x− 1, y− 2) and (x− 2, y− 1) are also available, provided the

respective coordinates are nonnegative.

Figure 1: The move options, from a given position, of Wythoff Nim and Ma-

haraja Nim respectively.
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As usual, for impartial games, we denote a position by P if the second player

wins, otherwise N. Our games will terminate in a finite number of moves so that

the sets of P- and N-positions will partition the set of starting positions. We

let PM and PW denote the set of P-positions of Maharaja Nim and Wythoff

Nim respectively. See Figure 2 for a computation of the initial P-positions of

the respective games and the Appendix, Section A, for the corresponding code.

Let φ = 1+
√
5

2 denote the Golden ratio. Wythoff Nim’s set pf P-positions is

PW = {(bφnc, bφ2nc), (bφ2nc, bφnc) | n ∈ N0}, (1)

[Wy1907]. From this it follows that there is precisely one P-position of Wythoff

Nim in each row and each column of the board (see also [Be1926]).

The purpose of this paper is to explore the P-positions of Maharaja Nim.

In particular we are interested in their relation to the Golden ratio. In a sense,

we will prove that the (asymptotic) behavior of the P-positions of Wythoff Nim

remains stable when the Knight type moves are adjoined to those of the Queen,

namely they will remain ‘close’ to the half-lines, starting at the origin, of slope

φ−1 and φ respectively (see Figure 3). We let O(1) denote bounded functions

on N0.

Theorem 1.1 (Main Theorem). Each P-position of Maharaja Nim lies on one

of the stripes φx + O(1) or φ−1x + O(1), that is, if (x, y) ∈ PM, with y ≥ x,

then y − φx is O(1).

We prove this result in Section 3, by encoding the patterns of the P-postions

by means of a certain dictionary process, thus introducing a new method for

analyzing games related to Wythoff Nim. This result is preceded by some

general properties of our games as well as a number theoretical Central Lemma

in Section 2. In Section 4 we finish off by proving that our dictionary processes

are in general algorithmically undecidable.

2 Complementary sequences and a central lemma

Let us begin by discussing some of the main properties of the P-positions of our

games. Clearly (0, 0) is P. Another trivial observation is that, since the rules

of game are symmetric, if (x, y) is P then (y, x) is P. It is also easy to see that
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Figure 2: The initial P-positions of Wythoff Nim and Maharaja Nim respec-

tively.

there is at most one P-position in each row and each column (corresponding

to the Rook-type moves). But, in fact, the same assertion as for Wythoff Nim

holds:

Proposition 2.1. There is precisely one P-position of Maharaja Nim in each

row and each column of N0 × N0.

Proof. Since all Nim-type moves are allowed in Maharaja Nim, there is at

most one P-position in each row and column of N0×N0. This implies that there

are at most k P-positions strictly to the left of the kth column (row). Each

such P-position is an option for at most three N-positions in column (row) k.

This implies that there is a least position in column (row) k which has only

N-positions as options. By definition this position is P and so, since k is an

arbitrary index, the result follows. �

Another claim holds for both Wythoff Nim and Maharaja Nim. There is at

most one P-position on each (upper) diagonal of the form

{(x, x+ C) | x ∈ N0}, C ∈ N0, (2)

(corresponding to the Bishop-type moves). We call (2) the Cth diagonal. By

symmetry it suffices to consider the upper diagonals.

For Wythoff Nim, (1) readily gives that there is precisely one P-position on
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Figure 3: To the left, the P-positions of Wythoff Nim lie ‘on’ the half-lines φx

and φ−1x, x ≥ 0. The figure to the right illustrates a main result of this paper,

that the P-positions of Maharaja Nim are bounded below and above by the

stripes y = φx+O(1) and y = φ−1x+O(1) respectively.

each such diagonal and more is true: if

PW = {(ai, bi), (bi, ai)}, (3)

with (ai) increasing and for all i, ai ≤ bi, then for all n,

{0, 1, . . . , n} = {bi − ai | i ∈ {0, 1, . . . , n}}. (4)

As we will see later in this section, a somewhat weaker, but crucial, property

holds also for Maharaja Nim.

We say that two sequences of positive integers are complementary if each

positive integer is contained precisely once in precisely one of these sequences.

In [FP] the authors proves the following result.

Proposition 2.2 (Fraenkel, Peled). Suppose (xn) and (yn) are complementary

and increasing sequences of positive integers. Suppose further that there is a

positive real constant, δ, such that, for all n,

yn − xn = δn+O(1). (5)

Then there are constants, 1 < α < 2 < β, such that, for all n,

xn − αn = O(1) (6)
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and

yn − βn = O(1). (7)

Since, as we will see, the y-sequence of Maharaja Nim’s P-positions is not

increasing, we cannot use this proposition directly. However, we have found a

simplified proof of an extension of this result.

By simple density estimates one may decide the constants α and β, in Propo-

sition 2.2, as functions of δ. Namely, notice that (5) and (6) together imply

β = α+ δ (8)

and, by complementarity, we must have

1

α
+

1

β
= 1. (9)

(Thus α and β are algebraic numbers if and only if δ is.) By this we get the

relation

δ(1− α) + α = (α− 1)α, (10)

which will turn out useful. If we denote

PM = {(an, bn), (bn, an) | n ∈ N0}, (11)

with (an) increasing and for all n, bn ≥ an, then, for all n, bn is uniquely defined

by the rules of M. At this point, one might want to observe that, if the b-sequence

would have been increasing (by Figure 2 it is not) then Theorem 1.1 would follow

from Proposition 2.2 if one could only establish the following claim: bn−an−n

is O(1). Namely in (10) δ = 1 gives α = φ in Proposition 2.2. Now, interestingly

enough, it turns out that Proposition 2.2 holds without the condition that the

y-sequence be increasing, namely (5) together with an increasing x-sequence

suffices.

Lemma 2.3 (Central Lemma). Suppose (xn) and (yn) are complementary se-

quences of positive integers with (xn) increasing. Suppose further that there is

a positive real constant, δ, such that, for all n,

yn − xn = δn+O(1). (12)
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Then there are constants, 1 < α < 2 < β, such that, for all n,

xn − αn = O(1) (13)

and

yn − βn = O(1). (14)

Proof. We begin by demonstrating that, for all n ∈ N,

xn+1 = xn +O(1), (15)

and

yn+1 = yn +O(1). (16)

By (12), for all k, n ∈ N we have that

yn+k − yn = xn+k + δ(n+ k)− xn − δn+O(1),

= xn+k − xn + δk +O(1). (17)

Since for all k, n ∈ N, xn+k−xn ≥ k and δ > 0 this means that, for all k, n ∈ N,

yn+k ≥ yn − C, (18)

where C is some universal positive constant (which may depend on δ). But,

with C as in (18), we can find another universal constant κ = κ(C) ∈ N such

that, for all n,

yn+κ − yn ≥ κ+ 2C + 1. (19)

This follows since, in (17), for any C, we can find k = k(C) such that, for all

n, δk + O(1) > 2C. Any such k suffices as our κ. On the one hand there

can be at most κ − 1 numbers from the y-sequence strictly between yn and

yn+κ (with indexes strictly in-between n and n + κ). On the other hand the

inequality (18) gives that there can be at most C numbers from the y-sequence

with index greater than n + κ but less than yn+κ. It also gives that there can

be at most C numbers with index less than n but greater than yn. Therefore,

by complementarity and (19), there has to be a number from the x-sequence
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in every interval of length κ + 2C + 1. Thus the jumps in the x-sequence are

bounded, which is (15). But then (16) follows from (12) and (15) since

yn+1 − yn = xn+1 + δ(n+ 1)− xn − δn+O(1)

= xn+1 + δ − xn +O(1)

= O(1).

By (16) we may define m as a function of n with

xn = ym +O(1). (20)

(For example, one can take m = m(n) the least number such that xn < ym.

Then ym−xn has to be bounded for otherwise ym−ym−1 is not bounded.) This

has two consequences, of which the first one is

xn = n+m+O(1). (21)

This follows since the numbers 1, 2, . . . , xn are partitioned in n numbers from

the x-sequence, and the rest, by complementarity, m+O(1) numbers from the

y-sequence.

The second consequence of (20) is that, by using (12),

xn = xm + δm+O(1). (22)

If limxn/n and lim yn/n exist then, clearly they must satisfy (8) and (9) with

δ as in the lemma. Thus, using this definition of α = α(δ), for all n, denote

∆n := xn − αn.

We want to use (21) and (22) to express ∆n in terms of ∆m.

Equation (22) expresses xn in terms of xm and m. Therefore, we wish to

combine (21) and (22) to express n in terms of xm and m, that is, we wish to

eliminate xn from (21). If we plug in the expression (22) for xn in (21) and

solve for n we get

n = xm + (δ − 1)m+O(1). (23)

Combining (22) and (23) gives

∆n = xm + δm− α(xm + (δ − 1)m) +O(1)

= (1− α)xm + (δ(1− α) + α)m+O(1)

= (1− α)∆m +O(1), (24)
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where the last equality is by (10).

Notice that, by (22), for sufficiently large n we have that m < n. Hence we

may use strong induction and by (24) conclude that ∆n is O(1) which is (13).

Then (14) follows from (12). �

3 Perfect sectors, a dictionary and the proof of

Theorem 1.1

This section is devoted to the proof of Theorem 1.1. We begin by proving

that there is precisely one P-position of Maharaja Nim on each diagonal of the

form in (2). Then we explain how the proof of this result leads to the second

part of the theorem, the bounding of the P-positions within the desired stripes

(Figure 3).

A position, say (x, y), is an upper position if it is strictly above the main

diagonal, that is if y > x. Otherwise it is lower.

We call a (C,X)-perfect sector, or simply a perfect sector, all positions

strictly above the Cth diagonal, of the form in (2), and strictly to the right

of column X. See Figures 4 and 5.

Figure 4: All upper positions from which a player can move to an upper P-

position are erased. (The sector continues above the figure.) However, the

sector is not perfect.

Suppose that we have computed all P-positions in the columns 1, 2, . . . , an−1

and that, when we erase each upper position from which a player can move to

an upper P-position, then the remaining upper positions strictly to the right of
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Figure 5: (Step 1) A perfect sector together with the corresponding initial P-

positions.

column an−1 constitute an (n− 1, an−1)-perfect sector (Figure 5). Then we say

that an−1 is perfect and, in fact, it is easy to see that also property (4) holds

for all such n. As we will see, it is essential to our approach that, for any such

n,

bn − an = n (25)

(whenever lower P-positions do not interfere).

Lemma 3.1. Let n ∈ N be sufficiently large so that Knight type moves from

lower P-positions do not affect the coordinates of upper P-positions and define

(ai) and (bi) as in (11). Suppose that an−1 is perfect. Then

{0, 1, . . . , n− 1} = {bi − ai | 0 ≤ i < n} (26)

and (25) holds.

Proof. There are precisely n− 1 upper P-positions. By the Bishop type moves

they produce precisely n − 1 upper diagonals of N-positions between the per-

fect sector and the 0th diagonal. Hence (26) holds. Further, there is no upper

P-position to the left of the anth column that interferes with the perfect sector

via a Knight type move, because then the sector would not have been perfect.

Hence, by definition of P, since the nth upper diagonal is free, the position

(an, an + n) ∈ PM . This gives bn = an + n so that (25) holds. �

We will adjoin a new word to Maharaja Nim’s dictionary if and only if the
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conditions in this lemma are satisfied. Let us proceed to explain this construc-

tion.

3.1 Constructing Maharaja Nim’s bit-string

We study a bit-string, a sequence of ‘0’s and ‘1’s, where the ith bit equals ‘0’

if and only if there is an upper P-position of Maharaja Nim in column i. By

Proposition 2.1, if there is no upper P-position in column i, there is a lower

ditto (the ith bit equals 1).

Suppose (as an induction hypothesis) that column n−1 is perfect. Then, by

symmetry, we know some lower P-positions in columns to the right of n. The

next step is to erase each column in the perfect sector for which there currently

is a lower P-position, a ‘1’ in the bit-string (see Figure 6).

Figure 6: (Step 2) Each column in the perfect sector which corresponds to a

lower P-position (a ‘1’ in the bit-string) has been erased.

Then, recursively in the non-erased part of the perfect sector, we compute

new upper P-positions until we reach the next perfect sector (for the moment

assume that this will happen) at say the perfect column n − 1 + m, m > 0.

Thus, using this notation, we define a word, say w, of length m, containing the

information of whether the P-position in column i ∈ {n, n + 1, . . . , n + m − 1}

is below or above the main diagonal.

At this point we adjoin this word together with its unique translate, D(w),

to Maharaja Nim’s dictionary. The translate is obtained accordingly: for each

P-position in the columns n to n +m− 1 define the ith bit in D(w) as a ‘1’ if

and only if row k + i has an upper P-position and where k is the largest row
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index strictly below the perfect sector. See also Figure 7 where k = 12 in the

leftmost picture. The translate D(w) will have length m + l, where l denotes

the number of ‘0’s in the word w. This follows since, by counting diagonals, a

new perfect sector will start in the position (n + m, k + m + l + 1). Since the

lth P-position (in case l > 0) will not correspond to the upper most P-position,

D(w) will end with at least 2 ‘0’s.

Figure 7: To the left, the unique (upper) P-positions of Maharaja Nim in the

columns 8 to 12 are computed. The corresponding translation is 00100 →

100101100. To the right are the P-positions in the columns 14 to 20 together

with the translation 0010110 → 10010011000. (Here we have omitted column

13 with its translation 1→ 0.) See also Figure 2 and Section 3.2.

We then concatenate the translate, D(w), at the end of the existing bit-

string. In this way, provided a next perfect sector will be detected, the bit-string

will always grow faster than we read from it. However, there is no immediate

guarantee that we will be able to repeat the procedure—that the next word

exists—or for that matter that the size of the dictionary will be finite, so that

the process may be described by a finite system of words and translates. But,

in the coming, we aim to prove that, in fact, the next perfect sector will always

(in the sense outlined above) be detected within a ‘period’ of at most 7 upper

P-positions, that is ‘0’s in the bit-string. As we will see, a complete dictionary

needs only (between 9 and) 14 translations. See also Section 4 for a brief general

discussion of such dictionary processes. (In this context it is interesting to

observe that PW , see Figure 2, can be derived from the dictionary 0→ 10 and

1→ 0; starting at the first column the word begins 01001010 . . . and hence we get

the well known infinite Fibonacci morphism.) Let us describe how Maharaja’s

bit-string is constructed.
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3.2 The first translations

Initially, there is some interference which does not allow a recursive definition of

words and translates, see Figure 2. The first perfect sector beyond the origin is

attained when the 4 first P-positions strictly above the main diagonal has been

computed. This happens in column 8, which is Step 1 above. There is only one

P-position below the main diagonal, as in Step 2, corresponding to a 1 in the

current bit-string. It will erase column 10 in the perfect sector. Then to the

right of column 12 a new perfect sector will be detected. Thus the first word

(left hand side entry) in the dictionary will be w = 00100 (the left picture in

Figure 7), corresponding to the P-positions (8, 13), (9, 16), (10, 7), (11, 19) and

(12, 18).

Let us verify that this word translates to D(w) = 100101100. Notice that the

first ‘1’-bit in D(w) means that the P-position (8, 13) is to the left of the main

diagonal—by symmetry this will correspond to a lower P-position in column

13. The second bit in w is ‘0’. This means that the next upper P-position is in

column 14. Then, by rules of game, it has to be at least in row 16, which indeed

will be attained, so that the next P-position will be (9, 16). In fact, by (26), the

rows 14 and 15 cannot have P-positions to the left of the main diagonal, so that

a prefix of the translate D(w) is ‘1001’. Similarily, up to the last P-position

of this word (12, 18) we extend the prefix to ‘1001011’ as is easely verified in

the figure. The next upper P-position will be at least in row 22 since the least

unused diagonal is 22 − 13 = 9. With notation as above, here m = 5 and

l = 4. (It will in fact be in row 23 since the next P-position is below the main

diagonal.) After this a new perfect sector will start. This gives the last two

‘0’s in the translate, ‘100101100’, which may now be concatenated at the end

of the first part of the bit-string, ‘00100’, so that the new bit-string becomes

‘00100100101100’.

The next word, to be included to the dictionary, will be the underlined ‘1’ (by

symmetry a lower P-position) which translates to ‘0’ since no upper P-position

can belong to row 22 since column 13 is occupied by a lower P-position and

again by (26). Then, the right picture in Figure 7 reveals how the next word

to be included to the dictionary will be detected as ‘0010110’ and translated

to ‘10010011000’. Again, concatenating the new translates at the end of the
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existing strings give ‘00100100101100010010011000’, where the underlined ‘0’ is

where the next word starts, and so on.

3.3 Maharaja Nim’s dictionary

Maharaja Nim’s dictionary is

1→ 0 (27)

01→ 100 (28)

00100→ 100101100 (29)

00110→ 10010100 (30)

000100→ 10010110100 (31)

001110→ 100100100 (32)

0010110→ 10010011000 (33)

00000100→ 100101100111000 (34)

000010010→ 1001001111000100 (35)

0000000→ 10010110110100 (36)

0010100→ 100100110100 (37)

0011110→ 1001000100 (38)

00000010→ 100101101100100 (39)

00001000→ 100100111100100. (40)

By computer simulations we have verified that each one of the words (27)

to (35) does appear in Maharaja Nim’s bit-string. We have included the code

the Appendix, Section B. By our method of proof, we have found no way to

exclude the latter five, but a guess is that they do not appear. At least they

do not appear among the first 20000 bits of the bit-string. The following result

gives the first part of the Main Theorem.

Lemma 3.2 (Completeness Lemma). When we read from Maharaja Nim’s bit-

string each prefix is contained in our extended dictionary of (left hand side)

words of Maharaja Nim.
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Proof. Let us present a list in lexicographic order of all words in our extended

dictionary together with the words we need to exclude:

0000000→ 10010110110100

00000010→ 100101101100100

00000011 ’to exclude’ (a)

00000100→ 100101100111000

00000101 ’to exclude’ (b)

0000011 ’to exclude (c)’

00001000→ 100100111100100

000010010→ 1001001111000100

000010011 ’to exclude’ (d)

0000101 ’to exclude’ (e)

000011 ’to exclude’ (f)

000100→ 10010110100

000101 ’to exclude’ (g)

00011 ’to exclude’ (h)

00100→ 100101100

0010100→ 100100110100

0010101 ’to exclude’ (i)

0010110→ 10010011000

0010111 ’to exclude’ (j)

00110→ 10010100

001110→ 100100100

0011110→ 1001000100

0011111 ’to exclude’ (k)

01→ 100

1→ 0

This list is complete in the sense that any bit-string has precisely one of the
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words on the left hand side as a prefix. This motivates why it suffices to exclude

the words ‘to exclude’. For example (a) needs to be excluded since the only

word in our list beginning with ‘0000001’ continues with a ‘0’. Neither can

we translate words beginning with ‘000001’ continuing with ‘01’ or ‘1’. This

motivates why we need to exclude (b) and (c). All left hand side words in our

dictionary beginning with 4 ‘0’s continues with 100, which motivates that (e)

and (f) need to be excluded, and so on. We move on to verify that the strings

(a) to (k) are not contained in the bit-string.

No translate contains more than three consecutive ‘0’s. To get a longer

string one has to finish off one translate and start a new. The only translate

starting with ‘0’ is ‘0’. Thus, when a sequence of four or more ‘0’s is interrupted

it means that a new translate has begun. But all translates that begin with a

‘1’ begins with ‘100’. Thus, a sequence of 4 or more ‘0’s cannot be followed by

‘11’ or ‘101’. This gives that the exclusion of the words (a),(b), (c), (e) and (f)

is correct.

For the same reason, the string ‘100’ in (d) has to be the prefix of some

translate. Since the next two bits are ‘11’, by the dictionary, this translate has

to be ‘100’. But then the next translate has the prefix ‘11’, which is impossible.

For the exclusion of (g) and (h), notice that any time three consecutive ‘0’s

appears, within a translate or between two translates, they are followed by the

string ‘100’. Therefore, a string of three ‘0’s cannot be followed by ‘11’ or ‘101’.

For (i), notice that the sub-string ‘101010’ is not contained in any translate.

If it were, it needed to be either at the beginning of a translate, which is impos-

sible (since all of them except ‘0’ begin with ‘100’) or be split between two. The

latter is impossible since all translates except ‘0’ ends with ‘00’. In analogy to

this, also (j) must be excluded and similarly for (k) since no translate contains 5

consecutive ‘1’s and all translates ends in a ‘0’, but starts with either ‘0’ or ‘10’.�

Proof of Theorem 1.1. By Lemma 3.2, our dictionary is correct. Since the

left hand side words have at most 7 ‘0’s we adjoin at most 6 P-positions in a

sequence with bn−an distinct from n. Namely, by Lemma 3.1, when we start a

new perfect sector we know that the next P-position will satisfy bn−an = n. The

number of bits in a translate is bounded (by 16) so that bn can never deviate
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more than a bounded number of positions from an + n. Hence, by Proposi-

tion 2.1, the conditions of Lemma 2.3 are satisfied with the a-sequence as x, the

b-sequence as y and δ = 1, that is bn − an − n is O(n) (as is also discussed in

the paragraph before Lemma 2.3) which concludes the proof of Theorem 1.1. �

By inspecting the dictionary one can see that, in fact, for all n, −4 ≤ bn −

an−n ≤ 3. Given this tight bound, the result in this section is quite satisfactory,

but for the two gamesters trying to figure out how to quickly find safe positions,

it does not quite suffice. The following question is left open.

Question 1. Does Maharaja Nim’s decision problem, to determine whether

a given position (x, y), with input length log(xy), is P, have polynomial time

complexity in log(xy)?

We resolve this question for a similar game in [LW].

4 Dictionary processes and undecidability

Let us briefly discuss a problem related to the method used in this paper. Given

a dictionary (of binary words and translations) and a starting string, will the

translation process of the bit-string terminate?

More precisely, let us assume that we have a finite list of words A =

{A1, A2, . . . , Am} with translates B1, B2, . . . , Bm respectively, each word be-

ing a string of ‘0’s and ‘1’s, and where we, for simplicity, assume that none of

the words in A is a prefix of another.

Take any finite bit-string S as a starting string (for example A1 but it could

be an arbitrary string, not necessarily in the list). A read head ‘ ’ starts to read

S from left to the right and as soon as it finds a string Ai in A it stops, sends

a signal to a printer at the other end which concatenates the translation Bi at

the end of S. Then the read head continues to read from where it ended until

it finds the next word in A, its translation being concatenated at the end, and

so on.

If the read head gets to the end of the string without finding a word in

the list A, the process stops with the current string as output. Otherwise, the

process continues and gives as output an infinite string.
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It follows from E. Post’s Tag Productions [Mi1961, MC1964, Po1943] that

it is algorithmically undecidable whether our dictionary processes stop or not.

Let us include the very short proof. (Another proof is available in an extended

version of this paper [LW].)

Theorem 4.1. It is undecidable whether a given (prefix-free) dictionary process

on a given initial string terminates.

Proof. Let S be a finite string of letters from the alphabet A = {a1, . . . an}

and let W be an associated list of words on this alphabet, say w1, . . . , wn.

By [MC1964, page 2] it is undecidable whether the following Tag Production

terminates. We read the first letter of S, say ai, then erase the first two letters

from S, and at last attach the word wi at the end of S. Continue by performing

the same operation on the resulting string. This production terminates if and

only if, at some stage, the string consists of at most one letter.

Thus, to prove that it is undecidable whether our dictionary process termi-

nates, it suffices to simulate this Tag system. By using binary words, each of

length precisely dlog2 ne (fill out with zeros if needed), we can code each ai ∈ A

as the binary representation of i−1 ∈ {0, . . . , n−1}. Our dictionary will consist

of all left hand side words of the form (i − 1)x, with i − 1, x ∈ {0, . . . , n − 1}

represented in binary, of length precisely 2dlog2 ne. (That is x is concatenated

to the right of (i − 1).) The x will correspond to the letter in A that the tag

production erases. In the dictionary process it will obviously not be erased.

Rather, via our translation rules it will be ignored and the read head will be

placed on the bit immediately to the right of its last digit. Each translation

in the Dictionary will be chosen to interpret only to the first dlog2 ne letters.

The translates for the dictionary process, to be concatenated to the right of

the existing string, will be the corresponding binary interpretation of each word

wi ∈ W ; say if w2 = a1a5a8 with n = 8 then, for any x, the dictionary’s corre-

sponding translate is ‘001x’→ ‘000 100 111’. Therefore this dictionary process

will terminate if and only if the tag production will. �

There are infinitely many relatives to Maharaja Nim of the form: adjoin

a (finite) list L of move options to Wythoff Nim, (l1, l2) ∈ L if and only if

(x, y)→ (x−l1, y−l2) is a legal move, for all positions (x, y) such that x−l1 ≥ 0
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and x − l2 ≥ 0. It is easy to see that Proposition 2.1 and (2) hold also for

these extensions of Wythoff nim (provided that L is finite). For any given such

generalization, is it possible to determine the greatest departure from n for

bn−an? Even simpler, is it decidable, whether there is a P-position above some

straight line?

Question 2. Given the moves of Wythoff Nim together with some finite list

L of moves, that is ordered pairs of integers (in Maharaja Nim the list is

{(1, 2), (2, 1)}), and a linear inequality in two variables x and y, is it decid-

able whether there is a P-position in the game which satisfies the inequality?

Of course, it is not even clear whether a given finite generalization of Ma-

haraja Nim (with (l1, l2) ∈ L if and only if (l2, l1) ∈ L) will produce a finite

dictionary in the sense of Section 2; see also [LW], where we study a similar but

non-prefix free dictionary for the game where L = {(2, 3, (3, 2)}.

Appendix

A The Maple code corresponding to Figure 2

The following code includes the P-positions of both Wythoff Nim and Maharaja

Nim in one and the the same diagram.

restart: with(plots): with(plottools):

N:=50;

theLine1:=CURVES([[0.0,0.0], [evalf(N), evalf(N*(1+sqrt(5))/2)]]):

theLine2:=CURVES([[0.0,0.0], [evalf(N*(1+sqrt(5))/2), evalf(N)]]):

#Compute the P-positions of Wythoff Nim and store as a list of squares.

#0=Not yet computed, 1=P, 2=N.

for i from 0 to N do for j from 0 to N do A[i,j]:=0: od: od:

for i from 0 to N do for j from 0 to N do if A[i,j]=0 then A[i,j]:=1:

for k to N do A[i+k, j]:=2: A[i+k,j+k]:=2: A[i,j+k]:=2: od: fi: od: od:

rectListW:=[]: for i from 0 to N do for j from 0 to N do if A[i,j]=1

then rectListW:=[op(rectListW), [[i,j],[i,j+1],[i+1,j+1],[i+1,j]]]: fi:
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od: od:

#Draw the P-positions and the two lines with slopes the golden ratio:

display(polygonplot(rectListW, color=red), theLine1, theLine2, axes=none,

scaling=constrained, view=[0..N, 0..N]);

#Compute the P-positions of Maharaja Nim:

for i from 0 to N do for j from 0 to N do A[i,j]:=0: od: od:

for i from 0 to N do for j from 0 to N do if A[i,j]=0 then A[i,j]:=1:

A[i+1,j+2]:=2:

A[i+2,j+1]:=2:

for k to N do A[i+k, j]:=2: A[i+k,j+k]:=2: A[i,j+k]:=2: od: fi: od: od:

rectListM:=[]: for i from 0 to N do

for j from 0 to N do if A[i,j]=1 then rectListM:=[op(rectListM),

[[i+0.2,j+0.2],[i+0.2,j+0.8],[i+0.8,j+.8],[i+0.8,j+0.2]]]: fi: od: od:

display(polygonplot(rectListM, color=blue), axes=none, scaling=constrained);

display(polygonplot(rectListM, color=blue),

polygonplot(rectListW, color=red), theLine1, theLine2, axes=none,

scaling=constrained, view=[0..N, 0..N]);

B The Maple code for Maharaja Nim’s dictio-

nary.

This code explores whether the first 9 words in Maharaja Nim’s dictionary suffice.

dictionary:={[1], [0,1], [0,0,1,0,0], [0,0,1,0,1,1,0], [0,0,1,1,0],

[0,0,0,1,0,0],[0,0,0,0,1,0,0,1,0], [0,0,0,0,0,1,0,0], [0,0,1,1,1,0]};

translation:=table([[1]=[0], [0,1]=[1,0,0], [0,0,1,0,0]=[1,0,0,1,0,1,1,0,0],

[0,0,1,0,1,1,0]=[1,0,0,1,0,0,1,1,0,0,0],[0,0,1,1,0]=[1,0,0,1,0,1,0,0],

[0,0,0,1,0,0]=[1,0,0,1,0,1,1,0,1,0,0],

[0,0,0,0,1,0,0,1,0]=[1,0,0,1,0,0,1,1,1,1,0,0,0,1,0,0],

[0,0,0,0,0,1,0,0]=[1,0,0,1,0,1,1,0,0,1,1,1,0,0,0],

[0,0,1,1,1,0]=[1,0,0,1,0,0,1,0,0]]);
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theString:=[0,0,1,0,0]: reader:=0:

for times to 12000 do foundWord:=false:

for i to 9 do if not foundWord then theWord:=theString[reader+1..reader+i]:

if member(theWord, dictionary) then foundWord:=true:

theString:=[op(theString), op(translation[theWord])]:

reader:=reader+i: fi: fi: od: if not foundWord

then print(reader, theString[reader+1..reader+20]): fi:

if times mod 100 = 0 then print(times, nops(theString)): fi: od:
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