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Thanks for the invitation!
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A heap game

There are 19 matches on the table. Two players, Alice and Bob,
alternate turns. Rules: remove 1 or 4 tokens. Last player wins. Can
Alice secure a win in the first move? Let’s play!
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Can we compute who will win? Let’s ask G.W. von Leibniz!
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The Stepped Reckoner

"...having constructed a successful mechanical calculating machine,
Leibniz dreamt of building a machine that could manipulate
symbols in order to determine the truth value of any mathematical
statement." (Wikipedia)
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Leibniz dream: Stepped Reckoner ↔ Easy Life?
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2-player games as algorithms

Proposition
Alice will win, given perfect play.

Proof by induction
Divide 19 by 5. The remainder is 4 matches. Remove them. Bob
moves from a heap of 15 matches, its remainder being 0 matches.
By subtracting either 1 or 4, the new remainder will be either 4 or 1
matches...
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A heap game

Alice starts from 19 matches.

19
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A heap game

Removing 4 matches gives residue 0. Bob will move from 15.

15
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A heap game

If Bob removes 1 match, then Alice will remove 4.

10 Bob

Alice
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A heap game

And vice versa.

10

Alice

Bob
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A heap game

If Alice rather starts from a heap of 18, then her Reckoner tells her
to remove 1 match. In conclusion, the safe positions have residue
either 0 or 2 when dividing by 5.

Theorem
Any one heap game with a finite number of move options can be
step reckoned. The dividend is ≤ 2x , where x is the largest number
of matches that can be removed.

Proof.
There are at most 2x combinations (patterns) of safe and unsafe
positions in a range of heap sizes y , y + 1, . . . , y + x − 1. Whenever
one such pattern reappears the future will become periodic.
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What about Leibniz dream in general?

David Hilbert’s Entscheidungsproblem (1928):
I Is there an algorithm that decides whether a given statement is

provable from the axioms of first order logic?
I Is there an algorithm that evaluates whether two given

propositions are equivalent?

I He believed "yes", but...
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Church and Turing delivered bad news...

In the 1930s Alan Turing and Alonzo Church independently proved
that such algorithms do not exist. Turing’s approach was to reduce
the halting problem of his universal “machine" to the
Entscheidungsproblem. He had already established that the halting
problem is algorithmically undecidable: there is no Turing machine
that can take as input the code of another Turing machine and
decide whether it will halt or not for a given input.

Emil Post nearly
proved it via his Tag Productions in the 1920s.
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...so we must get back to work!

"Human computers", Wikipedia.
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Decidability and heap games

Play on several heaps. The total number of matches must decrease.
It can increase on individual heaps. For example, play on two
ordered heaps, with rules: either

I remove 1 match from Heap1 and 3 matches from Heap2, or
I remove 2 matches from Heap1 and add 1 match to Heap2.
I denote this gameM = {(−1,−3), (−2, 1)}.
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Game rulesM = {(−1,−3), (−2, 1)}

(3, 2)

Any computer (with sufficient memory) can compute the status of
any given starting position. Who wins from (3, 2)? How?
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Safe positions of the gameM = {(−1,−3), (−2, 1)}
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(3, 2)→ (1, 3) is forced: safe goes to unsafe
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Bob’s final move
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Initial safe positions of the game
M = {(0,−2), (−2, 0), (2,−3), (−3, 2), (−5, 4), (−5,−2), (−4,−3), (−1,−4)}
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Decidability and heap games

Theorem (Larsson, Wästlund)
There is no algorithm that, given as input the number d of heaps
and two finite setsM andM′ of integer vectors specifying the
rules of two d-heap games, decides whether or not the sets of safe
positions ofM andM′ are the same.

That is, no computer can ever be programmed to take as input any
two rule-sets and decide whether the sets of safe starting positions
are identical.
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We have already seen that certain questions are
programmable by any modern computer

Who wins and how
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By our theorem, we also know that our games can
"compute" arbitrarily hard problems: produce a given
pattern if and only if the answer is "no" to a given problem

Goldbach’s
conjecture

Output?
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Wolfram’s Rules 60 and 110

Rule 60
Given a doubly infinite bit-string, we update the cells simultaneously
in discrete time steps. The content in a cell remains the same if
and only if the cell immediately to the left contains a "0".

Rule 110
A given cell remains "0" if the cell immediately to the left is also
"0". It remains "1" if at least one of the cells immediately to the
left or right is "0". Otherwise the value flips.
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The behavior of Wolfram’s Rule 60 cellular automaton is
decidable

1 10 20
0

10

20

Tape

Time

The CA given by the update function f (x , y) = x ⊕ y
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The updates of Wolframs famous rule 110 cellular
automaton

CA rule 110, time flows upwards. To the left the initial condition is
a single “1”. Matthew Cook (2004): given doubly periodic initial
patterns and a central data pattern, the behavior is undecidable.
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Safe positions as Isosceles Right Triangles

Idea for a Triangle Placing Game, also emulated via a game on
two heaps
Find rules so that a game position is safe if and only if it consists of
an IRT covering only 0s while its support covers only 1s.

Theorem (Larsson 2013)
There are games on just two heaps, with simple rules, that simulate
the patterns of given CA rule 60 and rule 110 precisely, and hence
the behavior of the latter game is undecidable.
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The rules of the rule 60 game

I There is one finite heap of matches (the time-heap) and one
finite heap of tokens (the tape-heap).

I The current player removes at least one match (at most the
whole heap) and at most as many tokens, as the number of
matches removed by the previous player (possibly zero).

I It is not allowed to remove the remaining match(es) unless the
tape-heap of tokens is empty.

I Hence, if a player cannot remove a match (from the
time-heap), the game ends and the other player wins.
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Examples of the rule 60 game

Figure: The previous player removed the rightmost match in the rule 60
game. Hence at most one token may be removed, which means that no
move is possible and hence the previous player wins.

Figure: In this game, the next player wins by removing the last match
together with both tokens.
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Why “tape-heap"? The rule 110 game.

I We two-color the tokens, black or white: the final y matches
can be removed if and only if the top y tokens are non-black.

I Thus, if there are no tokens left, then the last match can
always be removed.

I The number of tokens a player can remove depends both on
the current and the previous player’s removal of matches.

I If the previous player removed mp matches then
m − 1 ≤ t ≤ mp +m tokens must be removed,

I together with 1 ≤ m matches.

Urban Larsson, Killam, Dalhousie University, Halifax, Canada Combinatorial Games and Computability



Example of rule 110 heap game

Figure: A rule 110 game variation on two heaps. The rightmost heap
represents the previous player’s removal of matches. Who wins the
current game? Here mp = 3 and m ∈ {1, 2}. If m = 2 then 1 ≤ t ≤ 5,
which violates the final condition. Hence only m = 1, 0 ≤ t ≤ 4 is
possible, which gives a win for the second player, by removing the last
match together with 0, 1 or 2 tokens as appropriate to avoid a top black
token.
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The board game variation of the rule 110 game
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