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Pedigree

We study impartial games played on heaps of tokens

I 2-pile Nim (Bouton 1902)

I Wythoff Nim (Wythoff 1907, Fraenkel 1982)

applying standard variations of such games

I move-size dynamics (Whinihan 1963, Schwenk 1970,
Epp-Ferguson 1980, Zieve 1996, Holshouser-Reiter 2003,
Gurvich 2012)

I Muller twists a.k.a Blocking maneuvers (Muller 1998,
Holshouser-Reiter 2001, Smith-Stănică 2002)
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2-pile Nim

Bouton’s Nim is a 2-player game on a finite number of heaps, with
given non-negative numbers of tokens. The players alternate in
removing a positive number of tokens from precisely one of the
heaps, at most a whole heap. A player who cannot move loses.

We play on two piles and let Alice be the first player, Bob the
second.
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P = (0, 0), (1, 1), (2, 2), . . . I Let the starting position be (3, 5).

I Can Alice find a winning move?

I She removes two tokens from the
larger pile.

I Bob has to play so that the heaps
get different sizes.
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number of tokens, but from the
other pile.

I Note that this will always be
possible.

I The strategy is winning.
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Our plan

In effect, Alice’s winning strategy is to remove the same number of
tokens from the larger heap as Bob removed from the smaller.

We will construct new games by restricting the number of such
moves. For Nim, the number of such imitations is unlimited. What
if we fix a number and say that repeated imitation beyond this
number is not allowed?
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Impartial games

Our games belong to the family of acyclic impartial games on a
finite number of positions, where perfect play is possible. Two
players alternate in moving; they follow the same game rules; there
is no chance device, no hidden information and there is a final
position which determines the winner of the game. We play the
normal version where a player who cannot move loses.



Move-size dynamic imitations

Definition
Suppose that the heap sizes in a two heap take-away game are a
and b and that the previous player removed 0 < x tokens from the
a-heap, and where a + x ≤ b. Then the next player imitates the
previous player if he removes x tokens from the b-heap.

Definition
In the impartial game of Imitation Nim the players move as in Nim,
but imitations are not allowed. In k-Imitation Nim, at most k − 1
consecutive imitations by one and the same player are allowed.
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The outcome of an impartial game

Definition

I a position is P if none of its options is P

I a position is N if there is a P-position in its set of options.

It follows: Each terminal position is P; the previous player will win
if and only if the position is P.
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W. A. Wythoff’s Nim extension

The game of Wythoff Nim is an impartial game played on two piles
of tokens. It was published 1907 in the article “A modification of
the game of Nim” by W.A. Wythoff, a Dutch mathematician.

In
addition to the rules of Nim, Wythoff allows removal of an equal
number of tokens from each pile.

The game is maybe more known as the impartial game “Corner the
Queen” (Rufus P. Isaacs, 1960), where the two players alternate in
moving one single Queen-of-Chess, aiming to get her to the lower
left corner of a (large) chessboard; taking into consideration that,
by moving, the distance to this corner must decrease.
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Adjoining P-positions as moves

Nim→ Wythoff Nim, by adjoining all P-positions of Nim as moves.

Indeed the P-positions of 2-pile Nim are {(k , k) | k ∈ Z>0}.
Regarding move options as integers vectors to subtract from given
positions, these are the “diagonal moves” of Corner-the-Queen.
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The Wythoff-pairs

The P-positions of the game of Wythoff Nim, denoted by
PW = {(an, bn), (bn, an)}, can be computed recursively by a
certain “minimal exclusive” rule:

(0, 0),

(1, 2), (3, 5), (4, 7), etc

Definition
For X ⊂ Z≥0 (strict subset), let mex(X ) := min(Z≥0 \ X ).

Theorem
For n ≥ 0, an = mex{ai , bi | i < n}, bn = an + n.
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Complementary sequences

We say that two sequences of positive integers are complementary
if each positive integer is contained in precisely one of them.

Theorem (Rayleigh 1894, Beatty 1926)

Suppose that 0 < α < β are positive real numbers such that
1
α + 1

β = 1. Then (biαc)∞i=1 and (biβc)∞i=1 are complementary if
and only if 1 < α < 2 < β are irrational.

Beatty sequences

We call (biαc)∞i=1 a Beatty sequence (of modulus α) if α > 0 is
irrational.
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Properties of Wythoff’s sequences

Theorem (Wythoff, 1907)

Let PW = {(ai , bi ), (bi , ai )}∞i=0 denote the set of P-positions of
Wythoff Nim, with ai ≤ bi , for all i . Then

(i) (ai ) and (bi ) are strictly increasing sequences;

(ii) they are complementary;

(iii) for all i , bi − ai = i and

(iv) (ai , bi ) = (bφic, bφ2ic), where φ = 1+
√
5

2 , the golden ratio.

Theorem (Larsson, 2009)

The P-positions of Wythoff Nim are identical to those of Imitation
Nim, regarded as starting position.

The proof uses a simple inductive argument. We let Alice and Bob
illustrate the idea.
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PW =
(0, 0), (1, 2), (3, 5), . . .

I Suppose our starting position is an N-position
of Wythoff Nim, say (3, 4).

I We want to show that this position is an
N-position of Imitation Nim.

I Alice may invoke the imitation rule, by
removing two tokens from the smaller pile.

I Therefore Bob cannot move to (the
P-position of Wythoff Nim) (1, 2).

I There are no other P-positions of Wythoff
Nim as options. Induction gives the claim.

I ...Bob moves to (1, 3)

I but Alice responds by moving to (1, 2) and
wins.
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2-Imitation Nim

Example:

Let us play 2-Imitation Nim: at most one imitation is allowed. Let
the starting position be (2, 2).

Notation:
The default color of a token is blue. A token is green if removal of
it implies that an imitation counter is increased by one. A token is
yellow if it may not be removed. The imitation counter is drawn as
a black square.
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Example: At most one imitation

1

I The starting position is (2, 2).

I Alice moves to (1, 2);

I Removing a green token means to
imitate the previous move;

I If Bob moves to (0, 2) he will lose right
away, so he rather moves to (1, 1);

I The imitation counter increases by one
unit;

I Alice moves to (0, 1);

I This time, Bob cannot imitate, in fact
he can’t move at all.

I So (2, 2) is an N-position for
2-Imitation Nim, unlike 2-pile Nim.
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A Muller twist on Wythoff’s game

Our next game is 2-Blocking Wythoff Nim. At each stage of game,
the previous player may, before the next player moves, “block off”
at most one diagonal option from the set of Wythoff Nim options.
Any blocking maneuver is forgotten immediately after the move is
carried out.

A pair of tokens is painted red if it (together with the tokens on
top), may not be removed. Notice that one of the red tokens may
be removed, but not both at the same time.
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Example: One diagonal option may be blocked

I The starting position is (2, 2).

I Bob blocks off removal of all tokens;

I But Bob can only prolong Alice’s path
to victory;

I Alice moves to (1, 1) and makes the
obvious block;

I Bob may remove either one of the
tokens, but not both;

I and since a single token cannot be
blocked off,

I Alice wins, so (2, 2) is a next player
winning position...

I ...just as for 2-Imitation Nim.
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The generalized algorithm

For fixed positive integers k and m and all n ≥ 0, let

an = mex{ai , bi | i < n}, bn = an +
⌊m

k
n
⌋
.

Clearly (an) and (bn) are complementary. Questions:

I Is {(an, bn), (bn, an)} the set of P-position of some take-away
game?

I Can (an) and (bn) be described via Beatty sequences?

I If not, is the decision problem wether (x , y) is of the form
(an, bn) for some n tractable (polynomial in succinct input
size)?
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Fraenkel’s game with a diagonal Muller twist

Definition
The game of (k ,m)-Blocking Wythoff Nim, Wk,m, is the game
where the next player

I. moves as in 2-pile Nim, or

II. removes 0 < i tokens from one of the piles and remove 0 < j
tokens from the other pile as long as 0 ≤| j − i |< m
(Fraenkel’s m-Wythoff Nim 1982)

III. but before the next player makes his move, the previous player
may declare at most k − 1 of the diagonal options, i.e. with
i = j , as blocked (Hegarty, Larsson 2006).
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Arithmetic properties of Wk ,m

Proposition (Hegarty, Larsson 2006, 2009)

(i) The set of P-positions of (k ,m)-Blocking Wythoff Nim is
{(ai , bi ), (bi , ai )} (generalized form);

(ii) (an) and (bn) are strictly increasing;

(iii) #{i ∈ N | bi − ai = d} = k if m | d, otherwise
#{i ∈ N | bi − ai = d} = 0;

(iv) Suppose (a, b) and (c, d) are two distinct P-positions of a
game of (k ,m)-Blocking Wythoff Nim. Then a < c implies
b − a ≤ d − c (and b < d).

(v) Suppose bi ≥ ai . Then limi→∞
bi
ai

exists and is given by the

positive root of x2 − m
k x − 1 = 0, but

(vi) (ai ) and (bi ) can be expressed by Beatty sequences only for
special cases, namely if k | m. (Note: if k = 1 we have
Fraenkel’s m-Wythoff Nim.)
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A polynomial time approach

In the Appendix of my paper ’2-Pile Nim with a restricted number
of move-size imitations’, P. Hegarty shows that if k > 1 and
m = 1, the sequences are “close to” Beatty sequences with

α =
2k −m +

√
m2 + 4k2

2k
, β = α +

m

k
.

Via the general bound, for all n,

b(n − k − 1)αc ≤ an ≤ bnαc,

a polynomial time algorithm to determine PWk,m
is developed by

Udi Peled in his master thesis “Polynomializing seemingly hard
sequences using surrogate sequences” (advisor A. S. Fraenkel) +
paper. This has been generalized further by V. Gurvich (2012), to
non-complementary sequences generated by a generalized
mex-function.
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A dynamic counting of P-positions of Wk ,m

Definition
Let (a, b) be a position of Wk,m. Then

ξ((a, b)) := #{(i , j) ∈ PWk,m
| i < a, j − i = b − a}.

Notice that at each stage of game, for a previous player winning
strategy, at least ξ((a, b)) positions must be blocked off.
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Imitations and how to count them

Definition
Let m be a positive integer. Suppose that the previous player
removed x tokens from a smaller (or equal) pile. Then if the next
player removes x + i tokens from the other pile, where 0 ≤ i < m,
he m-imitates (or imitates) the previous player’s move.

Definition
For a fixed m, suppose the current position of a 2-pile take-away
game is X and the last two moves are Z → Y → X . Then put

L(X ) := L(Z )− 1

if Y → X m-imitates Z → Y . Otherwise put L(X ) := k − 1.

In particular, L(X ) = k − 1 if X is a starting position.
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The game of (k ,m)-Imitation Nim

Definition
Let k,m ∈ Z>0. The game of (k ,m)-Imitation Nim (or Imitation
Nim) is a take-away game on two piles of tokens, where the players

I move as in 2-pile Nim, but

I with the restriction that no more than k − 1 consecutive
m-imitations by one and the same player are permitted;

I that is, a player may not move to a Nim-option, say X , if it
would imply L(X ) = −1.

Note: At the Integers 2007 conference, A. Fraenkel suggested the
name “Limitation Nim” for the case k = 1.
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Comparing the number of options for modified games

Let k,m ∈ Z>0. How does the number of options of the games
(k ,m)-Blocking Wythoff Nim and (k ,m)-Imitation Nim vary as we
alter k and m?

Suppose we start with 2-pile Nim, then the
modified game has:

I on the one hand, for the “Wythoff Nim-setting”, if we

I adjoin P-positions as moves—more options;
I increase k, more options may be blocked—less options;
I increase m, diagonal moves widens—more options.

I on the other hand, for “Imitation Nim-setting”, if we

I limit the number of imitations—less options;
I increase k, more imitations are allowed—more options;
I increase m, more moves are imitations— less options.
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Main Theorem

Theorem (Larsson 2009)

Let k ,m ∈ Z>0.

I Then (x , y) is a P-position of (k,m)-Imitation Nim if it is a
P-position of (k ,m)-Blocking Wythoff Nim and
k − 1 ≥ L(x , y) ≥ ξ(x , y) ≥ 0. In particular this holds for
(x , y) a starting position of Imitation Nim.

I The “dynamic” P-positions of (k ,m)-Imitation Nim are of the
form (x , y + z) where (x , y), x ≤ y, is an upper P-position of
(k ,m)-Blocking Wythoff Nim and where
−1 ≤ L(x , y) < ξ(x , y) ≤ k − 1. (Similar for “lower”
positions.)

I Any other position of Imitation Nim is an N-position.
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Summary

I The game of 2-pile Nim may be viewed as an imitation game,
where a player may imitate the previous player’s moves
arbitrarily many times. The next player imitates the previous
player’s move if he removes the same number of tokens from
a larger pile as the previous player removed from a smaller (or
equal) pile.

I Wythoff Nim can be viewed as the game where we to 2-pile
Nim adjoin the P-positions as options.

I Limitation Nim = (1, 1)-Imitation Nim is the game where the
next player may not imitate the previous player’s most recent
move. This game has the same P-positions as Wythoff Nim,
if one only regards the starting positions.
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Summary

I If we put a Muller twist to a game of Wythoff Nim, where we
allow the previous player to block off at most k − 1 ≥ 0 of the
next player’s diagonal options, then, regarded as starting
positions, we get identical P-positions as for k-Imitation Nim.
For the latter game, at most k − 1 consecutive imitations
from one and the same player is permitted.

I A “wider m-diagonal” of Wythoff Nim corresponds to an
“m-relaxed” notion of an imitation. What is more, there is a
precise dynamic correspondence between the winning
positions of the games (k,m)-Blocking Wythoff Nim and
(k ,m)-Imitation Nim. This relationship constitutes our main
theorem.
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Question

I Do limited imitations and Muller twists also have some
interesting interpretations for classical (bimatrix) games?
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