A golden lower bound for Property W sets

Urban Larsson, Killam postdoc, Dalhousie University, Halifax, Canada, Second Joint International Meeting of the Israel Mathematical Union and the American Mathematical Society

June 17, 2014

イロト イポト イヨト イヨト

Table of contents

Prologue

A property of a set of positive integers

Wythoff Nim extensions

A (2) > (

æ

Prologue, Hegarty:

"An overriding feature of combinatorial number theory is that one is interested in properties of general sets of integers rather than of individual ones with a special arithmetical structure"

(日本) (日本) (日本)

Prologue, Hegarty:

"An overriding feature of combinatorial number theory is that one is interested in properties of general sets of integers rather than of individual ones with a special arithmetical structure"

・ 同 ト ・ ヨ ト ・ ヨ ト …

Prologue, Erdős, Rusza et. al.:

▶ There is an infinite set of positive integers X such that if,

(日) (四) (日) (日) (日)

Prologue, Erdős, Rusza et. al.:

- ▶ There is an infinite set of positive integers X such that if,
- ▶ for all $x, y, z, w \in X$, y x = z w implies y = z and x = w,

(D) (A) (A) (A) (A)

Prologue, Erdős, Rusza et. al.:

- ▶ There is an infinite set of positive integers X such that if,
- ▶ for all $x, y, z, w \in X$, y x = z w implies y = z and x = w,
- then

$$\limsup |X \cap \{1, 2, ..., n\}| \sim n^{\sqrt{2} - 1 - o(1)}$$

Prologue, Erdős, Rusza et. al.:

- There is an infinite set of positive integers X such that if,
- ▶ for all $x, y, z, w \in X$, y x = z w implies y = z and x = w,
- then

$$\limsup |X \cap \{1, 2, \dots, n\}| \sim n^{\sqrt{2}-1-o(1)}$$

э

▶ It is also known that, for all X satisfying this property, $|X \cap \{1, 2, ..., n\}| \le \sqrt{n} + O(n^{1/4})$

Prologue, Erdős, Rusza et. al.:

- There is an infinite set of positive integers X such that if,
- ▶ for all $x, y, z, w \in X$, y x = z w implies y = z and x = w,
- then

$$\limsup |X \cap \{1, 2, ..., n\}| \sim n^{\sqrt{2} - 1 - o(1)}$$

- It is also known that, for all X satisfying this property, $|X \cap \{1, 2, ..., n\}| \le \sqrt{n} + O(n^{1/4})$
- These type of estimates often concern bounds on the upper asymptotic density of sets, given certain avoidance criteria

(D) (A) (A) (A) (A)

The A and B sets

Let A denote any infinite set of positive integers. Let B denote its complement intersected with the positive integers. Then A and B are complementary sets on the positive integers. That is $A \cup B = \mathbb{N}$ and $A \cap B = \emptyset$.

The A and B sequences

We identify the set A with the unique sequence $A = (a_n)_{n=1}^{\infty}$ of strictly increasing positive integers. We are looking for an ordering of the elements in B that, together with the given A-sequence, satisfies a certain Property W.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Property W for a pair of sequences

(1) Suppose that there is an ordering of the elements in *B* such that $\delta_n := b_n - a_n > 0$, for all n

Urban Larsson, Killam postdoc, Dalhousie University, Halifax A golden lower bound for Property W sets

(D) (A) (A) (A) (A)

臣

Property W for a pair of sequences

- (1) Suppose that there is an ordering of the elements in *B* such that $\delta_n := b_n a_n > 0$, for all n
- (2) The pair of sequences (A, B) satisfies Property W, if (1) holds and in addition, for all $i, j \in \mathbb{N}$, $\delta_i = \delta_j$ implies i = j

Property W for a set

The set A satisfies Property W if (2) holds; that is, if A's complementary set B is sufficiently distanced from A in this precise sense.

(D) (A) (A) (A) (A)

3

A W-impossible case

Given the first few elements of the set $A = \{a_i\}_{i>0}$, there is no ordering of the elements in *B*, satisfying Property W. (For later use, let $b_0 = a_0 = 0$.)

< 同 > < 三 > < 三 >

How dense must a W-possible A-set be?

Let ϕ denote the golden ratio. Wythoff Nim's upper P-positions are $(0,0), (1,2), \ldots, (a_n, b_n), \ldots$, where for all $n \in \mathbb{N}$, $a_n = \lfloor \phi n \rfloor$ and $b_n = \lfloor \phi^2 n \rfloor$. The consecutive differences $\delta_n = b_n - a_n$ are the natural numbers in strictly increasing order, that is $\delta_n = n$ for all n. Hence $\{a_i\}$ satisfies Property W.

(ロ) (同) (三) (三)

(1, 2)-GDWN produces interesting sequences

 2-player impartial games: Nim is a famous normal play heap game, alternating play. Take any number of tokens from precisely one heap, at most the whole heap, finitely many heaps. A player who cannot move loses.

ヘロト ヘポト ヘヨト ヘヨト

(1, 2)-GDWN produces interesting sequences

- 2-player impartial games: Nim is a famous normal play heap game, alternating play. Take any number of tokens from precisely one heap, at most the whole heap, finitely many heaps. A player who cannot move loses.
- ► Wythoff Nim's moves are as in 2 heap Nim, or instead remove the same number from each heap.

イロト イポト イヨト イヨト

(1, 2)-GDWN produces interesting sequences

- 2-player impartial games: Nim is a famous normal play heap game, alternating play. Take any number of tokens from precisely one heap, at most the whole heap, finitely many heaps. A player who cannot move loses.
- Wythoff Nim's moves are as in 2 heap Nim, or instead remove the same number from each heap.
- ► (1,2)-GDWN's rules are: move as in Wythoff Nim, or instead remove t > 0 tokens from one heap and 2t tokens from the other, only limited by the number of tokens in each heap.

イロト イポト イヨト イヨト

The initial P-positions of (1,2)-GDWN

Note that neither (b_n) nor (δ_n) is increasing. By the rules of game it follows that $\{a_i > 0\} \cup \{b_i > 0\} = \mathbb{N}$, $\{a_i > 0\} \cap \{b_i > 0\} = \emptyset$, and property W holds.

< 同 > < 三 > < 三 >

Comparing the entries of lower sequences

The x_n entries represent our W-impossible lower sequence, a_n GDWN and A_n Wythoff Nim. Ah, they look so similar! How can we distinguish some interesting behavior?

• • = • • = •

Detour: moves and P-positions in the first quadrant

Nim's moves, $(0, t), (t, 0), t \in \mathbb{N}$

Nim's moves and its single P-beam

Wythoff Nim's moves

Wythoff Nim's moves and its splitted P-beams

(1,2)-GDWN's moves

(1,2)-GDWN's moves and P-beams experimentally

(1,2)-GDWN's sequence of b_i/a_i

(1,2)-GDWN's lower subsequence of b_i/a_i

臣

(1, 2)-GDWN's upper subsequence b_i/a_i

臣

Θ m: (1,2)-GDWN's upper P-beams (2,0.05)-split

Wythoff Nim extensions and Property W

The result on the previous slide is made possible by bounding the lower asymptotic density of any a-sequence satisfying Property W.

イロト イポト イヨト イヨト

э

Wythoff Nim extensions and Property W

- The result on the previous slide is made possible by bounding the lower asymptotic density of any a-sequence satisfying Property W.
- ► A game is a Wythoff Nim extension, if we can define its set of P-positions as {(a_i, b_i), (b_i, a_i)}, with (a_i) increasing, {a_i} and {b_i} complementary, and such that {a_i} satisfies Property W.

イロト イポト イヨト イヨト

Wythoff Nim extensions and Property W

- The result on the previous slide is made possible by bounding the lower asymptotic density of any a-sequence satisfying Property W.
- ► A game is a Wythoff Nim extension, if we can define its set of P-positions as {(a_i, b_i), (b_i, a_i)}, with (a_i) increasing, {a_i} and {b_i} complementary, and such that {a_i} satisfies Property W.

イロト イポト イヨト イヨト

► Observation: The game (1, 2)-GDWN is a Wythoff Nim extension.

Why a split? Explanation of Detour

Lemma Consider (1,2)-GDWN. Suppose, for $n \in \mathbb{N}$,

$$\frac{\#\{i > 0 \mid a_i < n\}}{n} \ge \phi^{-1} - o(1).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

æ

Then the upper P-positions split.

Take a larger view

Theorem (Property W)

Suppose that $\{a_i\}$ satisfies Property W. Then, for $n \in \mathbb{N}$,

$$\frac{|\{i > 0 \mid a_i < n\}|}{n} \ge \phi^{-1} - o(1) \tag{1}$$

and

$$\frac{|\{i > 0 \mid b_i < n\}|}{n} \le \phi^{-2} + o(1).$$
(2)

(D) (A) (A) (A) (A)

æ

In particular the result holds for $\{(a_i, b_i)\}$ representing the upper *P*-positions of any Wythoff Nim extension.

Proof

▶ Define the *y*-sequence as the unique permutation of a given *b*-sequence, with entries in increasing order. That is *y_n* < *y_{n+1}* for all *n* and {*y_n*} = {*b_n*}.

(D) (A) (A) (A) (A)

Proof

 Define the y-sequence as the unique permutation of a given b-sequence, with entries in increasing order. That is y_n < y_{n+1} for all n and {y_n} = {b_n}.

イロト イポト イヨト イヨト

Define the unique surjective index-function j : N → N, j = j(n) such that, for all n, a_j ≤ n < a_{j+1}. (This is well defined by (a_i) strictly increasing and a₁ = 1.)

• Suppose that (1) does not hold.

Urban Larsson, Killam postdoc, Dalhousie University, Halifax A golden lower bound for Property W sets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- Suppose that (1) does not hold.
- ► Then, by (a_i) increasing, there is an ε' > 0 such that, for all sufficiently large n, ^{j(n)}/_{a_{j(n)}} < φ⁻¹ − ε'.

- Suppose that (1) does not hold.
- ► Then, by (a_i) increasing, there is an ε' > 0 such that, for all sufficiently large n, ^{j(n)}/_{a_i(n)} < φ⁻¹ − ε'.
- ► We get $\frac{1}{\phi^{-1}-\epsilon'} < \frac{a_{j(n)}}{j(n)}$, which implies that there is an $\epsilon > 0$ such that, for all sufficiently large n, $\phi n + \frac{\epsilon n}{2} < a_n$.

ヘロト ヘポト ヘヨト ヘヨト

э

- Suppose that (1) does not hold.
- ► Then, by (a_i) increasing, there is an e['] > 0 such that, for all sufficiently large n, ^{j(n)}/_{a_{j(n)}} < φ⁻¹ - e['].
- ▶ We get $\frac{1}{\phi^{-1}-\epsilon'} < \frac{a_{j(n)}}{j(n)}$, which implies that there is an $\epsilon > 0$ such that, for all sufficiently large n, $\phi n + \frac{\epsilon n}{2} < a_n$.
- ▶ By complementarity this implies, for all sufficiently large n, $\phi^2 n \gamma(\epsilon) \ge y_n$, where $\gamma(\epsilon) > \frac{\epsilon n}{2}$ is a function of ϵ only.

イロト イポト イヨト イヨト

э

Thus

$$\delta'_n := y_n - a_n$$

$$< (\phi^2 - \phi)n - \epsilon n$$

$$= (1 - \epsilon)n,$$

for all sufficiently large *n*. Hence, $(\delta'_n)_{n \leq N}$ must contain at least ϵN (pairwise) repetitions, for all sufficiently large *N*.

Thus

$$\delta'_n := y_n - a_n$$

$$< (\phi^2 - \phi)n - \epsilon n$$

$$= (1 - \epsilon)n,$$

for all sufficiently large *n*. Hence, $(\delta'_n)_{n \leq N}$ must contain at least ϵN (pairwise) repetitions, for all sufficiently large *N*. But this does not yet contradict Property W. We must show that for any *b*-sequence, some δ -repetition will be forced.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Given C ∈ N, define the finite set S_b = S_b(C) of all indices of b-entries smaller than C.

(日) (四) (三) (三) (三)

- Given C ∈ N, define the finite set S_b = S_b(C) of all indices of b-entries smaller than C.
- ▶ Let (n_i) be the unique increasing sequence of the numbers in S_b.

(日) (四) (三) (三) (三)

- Given C ∈ N, define the finite set S_b = S_b(C) of all indices of b-entries smaller than C.
- Let (n_i) be the unique increasing sequence of the numbers in S_b .
- ► Then, n_i ≥ i, for all i, and therefore also, by (a_i) increasing, a_{ni} ≥ a_i, for all i.

(ロ) (部) (E) (E) (E)

▶ Suppose now that N is sufficiently large, so that $(\delta'_n)_{n \le N}$ contains ϵN repetitions, as defined in the previous paragraph, and study the unique set S_b of size N.

A (2) > (

э

- ▶ Suppose now that N is sufficiently large, so that $(\delta'_n)_{n \le N}$ contains ϵN repetitions, as defined in the previous paragraph, and study the unique set S_b of size N.
- ► It contains the indices of the N smallest entries in the b-sequence, (n_i)^N_{i=1}.

・ 同 ト ・ ヨ ト ・ ヨ ト

- ▶ Suppose now that N is sufficiently large, so that $(\delta'_n)_{n \le N}$ contains ϵN repetitions, as defined in the previous paragraph, and study the unique set S_b of size N.
- ► It contains the indices of the N smallest entries in the b-sequence, (n_i)^N_{i=1}.
- ► Thus, since $\sum_{S_b} a_i \ge \sum_{i=1}^N a_i$ and $\sum_{S_b} b_i = \sum_{i=1}^N y_i$, we get $\sum_{S_b} \delta_i \le \sum_{i=1}^N \delta'_i$, and so the sequence $(\delta_i)_{i=1}^N$ must also contain at least ϵN repetitions for all sufficiently large N.

A (2) > (

- ▶ Suppose now that N is sufficiently large, so that $(\delta'_n)_{n \le N}$ contains ϵN repetitions, as defined in the previous paragraph, and study the unique set S_b of size N.
- ► It contains the indices of the N smallest entries in the b-sequence, (n_i)^N_{i=1}.
- ► Thus, since $\sum_{S_b} a_i \ge \sum_{i=1}^N a_i$ and $\sum_{S_b} b_i = \sum_{i=1}^N y_i$, we get $\sum_{S_b} \delta_i \le \sum_{i=1}^N \delta'_i$, and so the sequence $(\delta_i)_{i=1}^N$ must also contain at least ϵN repetitions for all sufficiently large N.
- This contradicts property W, and so (1) must hold, and thus, by complementarity also (2).

(ロ) (同) (三) (三)

The other lemma is nontrivial, but very specific for (1,2)-GDWN (2014 in JIS). In this talk I just wanted to emphasize the more general result for Property W, which I think will find more interesting applications in the future.

The other lemma is nontrivial, but very specific for (1,2)-GDWN (2014 in JIS). In this talk I just wanted to emphasize the more general result for Property W, which I think will find more interesting applications in the future. At last, some plots of similar game's P-positions, some of which exhibit log-periodic behavior along split P-beams and others 'just' split, yet others just distort Wythoffs P-beams. (mostly conjectures):

(2,3)-GDWN sequence b_i/a_i

(2,3)-GDWN lower subsequence b_i/a_i

(2,3)-GDWN upper subsequence b_i/a_i

(2,4)-GDWN sequence $b_i/a_i \rightarrow \phi$?

(p, q)-GDWN sequence for non-Wythoff pairs: $B_i/A_i \rightarrow \phi$

Urban Larsson, Killam postdoc, Dalhousie University, Halifax A golden lower bound for Property W sets

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

(3,5)-GDWN sequence b_i/a_i

(3,5)-GDWN lower subsequence b_i/a_i

(3,5)-GDWN upper subsequence b_i/a_i

(4, 6)-GDWN sequence b_i/a_i

(4, 6)-GDWN lower subsequence b_i/a_i

(4, 6)-GDWN upper subsequence b_i/a_i

(4,7)-GDWN sequence b_i/a_i

(4,7)-GDWN lower subsequence b_i/a_i

(4,7)-GDWN upper subsequence b_i/a_i

(731, 1183)-GDWN sequence b_i/a_i (a Wythoff pair)

(731, 1183)-GDWN sequence b_i/a_i (a Wythoff pair)

P-beams split for (1,2)(2,3)(3,5)(5,8)-GDWN?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ