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ABSTRACT. We prove a recent conjecture of Duchêne and Rigo, stating that every
complementary pair of homogeneous Beatty sequences represents the solution to an
invariant impartial game. Here invariance means that each available move in a game
can be played anywhere inside the game-board. In fact, we establish such a result for
a wider class of pairs of complementary sequences, and in theprocess generalize the
notion of asubtraction game. Given a pair of complementary sequences(an) and(bn)
of positive integers, we define a gameG by setting{{an, bn}} as invariant moves. We
then introduce the invariant gameG⋆, whose moves are all non-zeroP -positions ofG.
Provided the set of non-zeroP -positions ofG⋆ equals{{an, bn}}, this is the desired
invariant game. We give sufficient conditions on the initialpair of sequences for this
’duality’ to hold.

1. NOTATION, TERMINOLOGY AND STATEMENT OF RESULTS

This note concerns 2-person, impartial games (see [BCG]) played under normal (as
against misère) rules. LetN, N0 denote the positive and the non-negative integers re-
spectively. Fork ∈ N, letB = B(k) := (Nk

0,⊕,�) denote the partially-ordered semi-
group consisting of all orderedk-tuples of non-negative integers, where for elements
x = (x1, . . . , xk), y = (y1, . . . , yk) of B one defines

x ⊕ y := (x1 + y1, . . . , xk + yk)

and
x � y ⇔ xi ≤ yi, i = 1, . . . , k.

Hencex ≺ y if x � y andxi < yi for somei. Fory � x we define

x ⊖ y := (x1 − y1, . . . , xk − yk).

We callB thegame board. Let G = G(F,B) denote a game, where for allx ∈ B,
F (x) ⊂ B defines the set ofoptionsof x in the sense thaty ∈ F (x) if and only if
there is a move fromx to y. Formally, themovefrom x to y is the ordered pair(x, y).
In this paper, the phrase‘x → y is an option’ will often be used synonymously with
‘y ∈ F (x)’, in order to avoid cumbersome notation.

Given this setting, the two players only need to (randomly) pick a starting position
x ∈ B and decide who plays first. Then they play by alternating in choosing options
from F (·) (and moving accordingly). Although we have announced that the last player
to move wins (normal play), without some additional assumptions there is no guarantee
that the game will terminate.

Key words and phrases.Beatty sequence, Complementary sequences, Impartial game, Invariant game,
Superadditivity.
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By a k-pile subtraction game1 we mean a game played onB such that, for each
x ∈ B, the setF (x) ⊂ B has the property thaty ∈ F (x) ⇒ y ≺ x. In the setting of
invariant games (to be defined below), it will be convenient to abuse notation and also
refer to thek-tuplex⊖y ≻ 0 as amove. Observe that both options and moves are then
elements ofB, but with different meanings.

In this paper, whenever we refer to a(subtraction) gamewe intend ak-pile subtrac-
tion game. LetG be a game. ThenT = T (G) := {x | F (x) = ∅} denotes the set of
terminalpositions. Clearly0 := (0, . . . , 0) ∈ T and0 is unique. It is natural to require
thatT be alower idealin the poset, that is, ifx ∈ T andy ≺ x, theny ∈ T . Clearly,
in this setting, any game must terminate within a finite number of moves and thewinner
is the player who makes the last move. The opponent is theloser.

Recently, Duchêne and Rigo [DR] introduced the notion of an invariant game.
A k-pile invariant subtraction gameG is defined by a setM(G) ⊆ B \{0} of

(invariant) moves, where, for everyr ∈ M(G) and everyx � r, x → (x ⊖ r) is an
option (and these are all the options)2. If a game is not invariant it isvariant.

A position (a game) isP if all of its options areN . Otherwise it isN . This means
that the first player to move wins if and only if the game isN . As usual, we shall denote
by P(G) (resp.N (G)) the collection ofP - (resp.N-) positions ofG.

Finally, if G is a (not necessarily invariant) game, then we can define an invariant
gameG⋆ on the same game board by setting

M(G⋆) := P(G)\{0}. (1.1)

Example 1. DefineG byM(G) = ∅. ThenP(G) = B and soM(G⋆) = B\{0}. This
givesP(G⋆) = {0}, so that in factN (G⋆) = M(G⋆). This latter equality does not hold
in general. For example, letG rather denote 2-pile Nim. Then3 M(G) = {{0, x} | x ∈
N} andP(G) = {{x, x} | x ∈ N0}. By (1.1), this givesM(G⋆) = {{x, x} | x ∈ N}.
Then it is easy to see thatP(G⋆) = {{0, x} | x ∈ N0}. Hence, for the two games in
this example we have that(G⋆)⋆ = G. Neither does this equality hold in general. (See
also Example 2.)

From now onwards we letk = 2.
A pair of sequences(xn)n∈N and(yn)n∈N of positive integers is said to becomple-

mentaryif {xn} ∪ {yn} = N and{xn} ∩ {yn} = ∅.
Let α < β be positive irrational numbers satisfying1/α + 1/β = 1. Hence1 <

α < 2 < β. We call(α, β) an (ordered)Beatty pair. It is well-known [BOHA] that the
sequences(⌊nα⌋)n∈N and(⌊nβ⌋)n∈N are complementary.

Our purpose is to prove the following conjecture [DR]:

1Our subtraction games are generalizations of the Nim-type subtraction games defined in [BCG].
There are some alternative names for our games that can be found in the literature, such asTake-away
games, Removal games. By our choice we emphasize the natural additive structure onB.

2This notation and terminology is consistent with that employed in [DR].
3A subsetR of B = N0×N0 is symmetricif (x, y) ∈ R ⇔ (y, x) ∈ R. (We dispense with the obvious

generalisation tok > 2 piles.) If the setsM(G) andT (G) are symmetric subsets ofB, then so are the
setsN (G) andP(G). In this case the gameG will be calledsymmetric. Sometimes it will be convenient
to denote moves and positions of a symmetric game by unordered pairs{r, s}. Hence, whenever we write
‘{r, s} ∈ M(G)’ for example, what we mean is that{(r, s), (s, r)} ⊆ M(G).
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Conjecture 1.1 (Duchêne-Rigo). Let (α, β) be a Beatty pair. Then there exists an
invariant gameG such thatP(G) = {{⌊nα⌋, ⌊nβ⌋} | n ∈ N0}.

Let t ∈ N. We say that a sequence(Xn)n∈N0
of non-negative integers ist-superadditive

if, for all m, n ∈ N0,

Xm + Xn ≤ Xm+n < Xm + Xn + t. (1.2)

Note that the left-hand inequality of (1.2) is the usual definition of superadditivity.
Let a = (an)n∈N andb = (bn)n∈N be sequences of positive integers and definea0 =

b0 = 0. We say that the set{(an, bn) | n ∈ N0} of ordered pairs ist-superadditive-
complementary, abbreviatedt-SAC, if the following criteria are satisfied:

• a1 = 1,
• a andb are complementary sequences,
• a is increasing,
• b is t-superadditive.

We can now state the main result of this paper :

Theorem 1.2. Suppose that the set{(an, bn) | n ∈ N0} of ordered pairs isb1-SAC.
DefineG by settingM(G) := {{an, bn} | n ∈ N}. Then

P(G⋆) = M(G) ∪ {0} (1.3)

and
(G⋆)⋆ = G. (1.4)

An immediate consequence of this result is

Corollary 1.3. Suppose that{(an, bn) | n ∈ N0} is b1-SAC. Then there is an invariant
gameI such thatP(I) = {{an, bn} | n ∈ N0}.

Proof of Corollary. TakeI = G⋆ in Theorem 1.2. 2.

It is well-known and easy to check that ifa andb are a pair of complementary homo-
geneous Beatty sequences, then the set{(an, bn) | n ∈ N0} is 2-SAC, henceb1-SAC.
Therefore, Corollary 1.3 implies Conjecture 1.1.

Because of (1.4), it is natural to refer to the gameG⋆ defined by (1.1) as thedual of
G, whenG satisfies the hypotheses of Theorem 1.2. It is important to note, however,
that the‘duality relation’ (1.4) doesn’t always hold for gamesG not satisfying these
hypotheses.

Example 2. As a simple but instructive example, takeG = WN, the ordinary Wythoff
Nim game [W], so thatM(WN) = {{0, i}, (i, i) | i ∈ N}. This set obviously does not
satisfy the hypotheses of Theorem 1.2, whereasM(WN⋆) does so. Indeed, according
to (1.1), we have

M(WN⋆) = P(WN)\{0} = {{⌊nφ⌋, ⌊nφ2⌋} | n ∈ N}, φ =
1 +

√
5

2
. (1.5)

It is easy to see that{{0, x} | x ∈ N0} ⊂ P(WN⋆). Otherwise it is easy to check that
theP -positions of WN⋆ begin

(1, 1), (3, 3), (3, 4), (4, 4), (6, 6), (8, 8), (8, 9), (8, 12), (9, 9), (9, 12), . . .
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(see Figure 1 and [L3] for further results) and hence

(WN⋆)⋆ 6= WN.

But if we go one step further, it follows from (1.5) and Theorem 1.2 that

((WN⋆)⋆)⋆ = WN⋆.

In particular, the games WN and (WN⋆)⋆ do have the sameP -positions.

FIGURE 1. The set{{i, j} ∈ P(WN⋆) | 0 ≤ i, j ≤ x} = {(0, 0)} ∪
{{i, j} ∈ M((WN⋆)⋆) | 0 ≤ i, j ≤ x}, for x = 100, 400 respectively.

Numerous generalizations and variations of Wythoff Nim canbe found in the litera-
ture. In fact, this game can be credited with opening up the territory of the games we
are exploring in this paper. However, we have not been able tofind any literature on the
game(WN⋆)⋆.

The rest of the paper is organised as follows. In Section 2, wewill prove Theorem 1.2.
In Section 3, we explore the problem of describing necessaryand sufficient conditions
on a pair(an), (bn) of complementary sequences for there to exist an invariant game
G with P(G) = {{an, bn}} ∪ {0}. We are unable to solve this problem definitively,
though we discuss several pertinent examples. One of these concerns an application of
Theorem 1.2 to defining an invariant game with the same solution as the variant game
’the Mouse game’ [F3]. In another example, we study the set ofP -positions of the
invariant gameG = (1, 2)GDWN [L2]. Here, theb-sequence is not increasing and we
show thatP((G⋆)⋆) 6= P(G).

2. PROOF OFTHEOREM 1.2

Let us begin by proving some basic facts about any sequence ofb1-SAC pairs.

Proposition 2.1. Suppose that{(an, bn) | n ∈ N0} is b1-SAC. Then, for alln ∈ N0,

(i) bn+1 − bn ≥ b1 ≥ 2,
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(ii) an+1 − an ∈ {1, 2},
(iii) an < bn and the sequence(bn − an) is non-decreasing,
(iv) for all m, n ∈ N0,

am + an − 1 ≤ am+n ≤ am + an + 1. (2.1)

Proof. Part (i): By definitiona1 = 1. Then, by complementarity,b1 ≥ 2. The first
inequality follows by superadditivity.
Part (ii): Letdn := an+1 − an. Sincea is increasing we havedn ≥ 1 for all n. Suppose
that there exists ann such thatdn ≥ 3. Then, by complementarity, there exists ani such
thatbi = an + 1 andbi+1 = an + 2. But thenbi+1 − bi = 1, contradicting (i).
Part (iii): We haveb1 > a1 by definition, and it follows from parts (i) and (ii) that the
sequence(bn − an) is non-decreasing.
Part (iv): Note that, since the sequences(ai) and(bi) are increasing and complementary,
we have for anyi > 0 that

bai−i < ai < bai−i+1. (2.2)

The inequalities in (2.1) are trivial if eitherm or n equals zero, so we may suppose that
m, n > 0. Fix m andn. Let the integersr, s be defined by

br < am < br+1, bs < an < bs+1. (2.3)

Then, by (2.2), it follows thatam = m + r andan = n + s, hence thatam + an =
(m + n) + (r + s). First of all, consider the right-hand inequalities in (2.3). Superaddi-
tivity of b implies that

br+s+2 ≥ br+1 + bs+1 ≥ am + an + 2 = (m + n) + (r + s + 2).

Then, by (2.2) again we must have

am+n ≤ (m + n) + (r + s + 1) = am + an + 1,

which proves the right-hand inequality of (2.1).
Secondly, the fact that the sequenceb is b1-superadditive implies that

br+s−1 ≤ br−1 + bs + (b1 − 1) ≤ (br − b1) + bs + (b1 − 1) = br + bs − 1.

This, together with the left-hand inequalities in (2.3), imply that

br+s−1 ≤ (am − 1) + (an − 1) − 1 = (m + n) + (r + s − 3).

By complementarity, it follows that

am+n−2 ≥ (m + n) + (r + s − 3).

Then, the fact thata is increasing implies that

am+n ≥ am+n−2 + 2 ≥ (m + n) + (r + s − 1) = am + an − 1,

which proves the left-hand inequality of (2.1). This completes the proof of Proposition
2.1. 2

Remark 1. In the above proof, superadditivity ofb sufficed, except for the left-hand
inequality in (2.1). Only the latter requiredb1-superadditivity. Interestingly enough,
b1-superadditivity is needed for the proof of Theorem 1.2, butthe left-hand inequality
in (2.1) is not.
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For our particular setting, the next lemma is a special case of part (iii) of the one to
follow. But it is nice to first state it in a more general form.

Lemma 2.2(A P -position is never an invariant move). LetG be an invariant subtraction
game. ThenM(G) ∩ P(G) = ∅.

Proof. Suppose that there was a mover ∈ P(G). Then, in particular,0 = r − r ∈
F (r). But0 ∈ P(G), so thenr ∈ N (G), a contradiction. 2

The hypothesis of the next lemma is satisfied, in particular,by any gameG for which
M(G) ∪ {(0)}, viewed as an ordered set, isb1-SAC. The items (i) and (ii) characterize
precisely the lower idealT (G).

Lemma 2.3. Let (an)n∈N and(bn)n∈N be any pair of increasing sequences of positive
integers, and suppose thatG is an invariant subtraction game withM(G) = {{an, bn}}.
Then

(i) {0, k} ∈ P(G), for all k ∈ N0,
(ii) {k, l} ∈ P(G) if k, l ∈ {1, 2, . . . , b1 − 1},
(iii) If k, l > 0 then{k, l} ∈ N (G) if, for somen > 0,

(a) k = an andl ≥ bn, or
(b) k = bn andl ≥ an, or
(c) an−1 ≤ k < an−1 + b1 andbn−1 ≤ l < bn−1 + b1.

Proof. Parts (i), (ii): By the definition ofM(G), it is clear thatF ({k, l}) = ∅ if either
min{k, l} = 0 or max{k, l} < b1.
Part (iii): If (a) holds, then

(k, l) → (k, l) ⊖ (an, bn) = (0, l − bn),

is an option inG. Since(0, l − bn) ∈ P(G) by (i), it follows that (k, l) ∈ N (G).
Similarly, if (b) holds then one considers the option

(k, l) → (k, l) ⊖ (bn, an) = (0, l − an) ∈ P(G).

Finally, if (c) holds, then we have the option

(k, l) → (k, l) ⊖ (an−1, bn−1) = (k − an−1, l − bn−1).

Sincek − an−1 < b1 andl − bn−1 < b1, we have(k − an−1, l − bn−1) ∈ P(G) by (ii),
and hence(k, l) ∈ N (G) once more. 2

Proof of Theorem 1.2.Clearly, (1.4) follows from (1.3) so it remains to prove the latter.
Recall that the moves in the gameG⋆ are given byM(G⋆) := P(G) \ {0} and where
M(G) := {{an, bn} | n ∈ N0} \ {0}. We want to show that

P(G⋆) = {{an, bn} | n ∈ N0}. (2.4)

By the definition ofP, this corresponds to showing that, for all(α, β) ∈ B,

∃ n such that either(α, β) → (an, bn) or (α, β) → (bn, an) is an option inG⋆ (2.5)

if and only if {α, β} 6= {ai, bi} for all i ∈ N0.

“N→ P”: Suppose that{α, β} 6= {ai, bi} for any i ∈ N0. If (α, β) ∈ P(G) then
(α, β) → 0 = (a0, b0) is an option inG⋆, thus satisfying (2.5). If(α, β) ∈ N (G),
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then there exists(x, y) ∈ P(G) such that(α, β) → (x, y) is an option inG. By def-
inition of M(G), there existsj ∈ N such that either(α, β) ⊖ (aj, bj) = (x, y) or
(α, β)⊖ (bj , aj) = (x, y). Note that our assumptions thus imply that(x, y) 6= 0. Hence
(x, y) ∈ P(G)\{0} = M(G⋆). Since(α, β) ⊖ (x, y) ∈ {(aj , bj), (bj , aj)}, we see that
once again (2.5) is satisfied.

“P→ N”: Suppose that{α, β} = {ai, bi} for somei ∈ N0 and that (2.5) holds. By
symmetry, it suffices to consider the following two cases : there existsm, n ∈ N0 such
that m > 0 and either(am+n, bm+n) → (an, bn) or (am+n, bm+n) → (bn, an) is an
option inG⋆.

First suppose the latter. Let

(x, y) := (am+n, bm+n) ⊖ (bn, an).

By definition ofG⋆, we must have(x, y) ∈ P(G)\{0}. By Lemma 2.2, we may assume
thatn > 0. Thenx = am+n − bn < am+n − an ≤ am + 1, by parts (iii) and (iv) of
Proposition 2.1. Hencex ≤ am. By complementarity, there existsp ≤ m such that
x ∈ {ap, bp}. On the other hand,y = bm+n − an > bm+n − bn ≥ bm, by superadditivity
of b. In particular,y > x. But then(x, y) ∈ N (G), by parts (a),(b) of Lemma 2.3(iii), a
contradiction.

Second, suppose that(am+n, bm+n) → (an, bn) is an option inG⋆. Let

(x, y) := (am+n, bm+n) ⊖ (an, bn). (2.6)

As before, we must prove the contradiction that(x, y) ∈ N (G). By theb1-superadditivity
of b, we have

bm ≤ y < bm + b1. (2.7)
If x ≤ am then we can appeal to parts (a),(b) of Lemma 2.3(iii) again. By the right-
hand inequality of (2.1), the only other possibility is thatx = am + 1. Sincem > 0 and
y ≥ bm, we havey ≥ x. If x = bi for somei, then part (b) of Lemma 2.3(iii) gives a
contradiction. This leaves the possibility thatx = am+1 = am + 1. But then, because
of (2.7), we get a contradiction from part (c) of Lemma 2.3(iii). 2

3. DISCUSSION

In this section we provide four examples and suggest some future work.

Example 3. Let a and b be any complementary, though not necessarily increasing,
sequences beginning as in Table 1 below.

As usual, seta0 = b0 := 0. Note that the set of pairs{(an, bn) | n ∈ N0} cannot be
b1-SAC, sinceb3 = b2+1 = b2 + b1 + b1. Suppose there were an invariant gameG with
P(G) = {{an, bn} | n ∈ N0}. Then(2, 6) ∈ N (G). But (2, 6) = (4, 13) ⊖ (2, 7), a
contradiction.

Nevertheless, if the sequencesa and b are increasing,a1 = 1 and theb-sequence
grows at only a slightly faster rate than that allowed by (1.2), then Theorem 1.2 will
hold again. Indeed, suppose that

b2 ≥ 2b1 and bm+n ≥ bm+1 + bn for all m ≥ 1, n ≥ 2. (3.1)

We can still use Lemma 2.3 and one may check that the proof of Theorem 1.2 goes
through. Consider (2.6), for example. We still havex ≤ am + 1 ≤ am+1, since for the
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bn 3 7 13

an 1 2 4

n 1 2 3
TABLE 1. Theb-sequence does not satisfy the right-hand inequality in (1.2).

right-hand inequality of (2.1) we only requiredb to be superadditive. Ifn ≥ 2, then
(3.1) implies thaty ≥ bm+1. Then from Lemma 2.3(iii), parts (a) and (b), it follows that
(x, y) ∈ N (G). We can obtain the same conclusion even whenn = 1, since then we
still havey ≥ bm and nowx = am+1 − 1 < am+1, with strict inequality.

Example 4. (A similar example to this one appears in [DR]). Leta and b be any
complementary sequences beginning as in Table 2.

Put a0 = b0 := 0. The set of pairs{(an, bn) | n ∈ N0} cannot beb1-SAC since
b2 = b1+1 = b1 + b1 − 1. Suppose there were an invariant gameG with P(G) =
{{an, bn} | n ∈ N0}. Then(1, 3) ∈ N (G). But (1, 3) = (2, 7)⊖ (1, 4), a contradiction.

bn 4 7

an 1 2

n 1 2
TABLE 2. Theb-sequence does not satisfy superadditivity, the left-hand
inequality in (1.2).

This example also arises from a pair of complementary, but inhomogeneous Beatty
sequences. Let(α, β) be a Beatty pair. Letγ, δ ∈ R. For eachn ∈ N, let

an := ⌊nα + γ⌋, bn := ⌊nβ + δ⌋. (3.2)

Fraenkel [F1] proved that the sequences(an) and(bn) are complementary if and only if
nβ + δ 6∈ Z for anyn ≥ 1, and

γ

α
+

δ

β
= 0. (3.3)

Choose a pair of (small) irrational numbersǫ1, ǫ2 > 0. Let α := 7

5
+ ǫ1, β := 7

2
− ǫ2.

Chooseδ 6∈ Q(β) satisfying

1

2
+ ǫ2 ≤ δ < 1 − 2ǫ2. (3.4)

It is not hard to check that, for an appropriate choice ofǫ1, ǫ2, δ, the numberγ < 0
defined by (3.3) will satisfy

−2

5
− ǫ1 ≤ γ <

1

5
− 2ǫ1. (3.5)

From (3.4) and (3.5), one may then verify in turn that the sequences(an) and (bn)
defined by (3.2) begin as in Table 2.



INVARIANT AND DUAL SUBTRACTION GAMES RESOLVING THE DUCHÊNE-RIGO CONJECTURE.9

Example 5. For eachn ∈ N, let an := ⌊3n
2
⌋ and bn := 3n − 1. It is easy to see

that(an) and(bn) are a pair of complementary, inhomogeneous Beatty sequences. Put
a0 = b0 := 0, as usual. In [F3], a variant gameG named‘the Mouse game’ was invented
with P(G) = {{an, bn} | n ∈ N0}. But, since it is easy to verify that{(an, bn)} is b1-
SAC, by Theorem 1.2 we may also introduce an invariant gameH, which we call ‘the
Mouse trap’, withP(H) = P(G). In analogy with Example 2, the invariant rules are
M(H) = P(G⋆).

Remark 2. In [F2, L1] invariant games with symmetric moves are defined whoseP -
positions consist of complementary inhomogeneous Beatty sequences (CIBS). Both pa-
pers include variations of Wythoff Nim. In the former a misère variation (the player who
moves last loses) is studied. Indeed, we believe it to be the ’most natural/direct’ way to
construct a game with CIBS asP -positions. In the latter paper, the terminal positions
are(l, 0) and(0, p − l), for some integers0 < l < p, so the game is only symmetric if
p = 2l. Namely, here the game board is rearranged to

B := (N0 × N0)\{(i, j) | 0 ≤ i < l, 0 ≤ j < p − l}.
The above examples provide some extra insight into the following problem, which

nevertheless remains wide open :

Problem 1. Let (an), (bn) be a pair of complementary, increasing sequences with
a1 = 1. Find necessary and sufficient conditions for the existenceof an invariant game
G with P(G) = {{an, bn}} ∪ {0}.

A special case which might be more tractable is the case of inhomogeneous Beatty
sequences. Motivated by Examples 4 and 5, we may ask

Problem 2. Let (an), (bn) be a pair of complementary, inhomogeneous Beatty se-
quences witha1 = 1. Is it true that there exists an invariant gameG with P(G) =
{{an, bn}} ∪ {0} if and only if the set of pairs{(an, bn)} is b1-SAC ?

Combining Theorem 1.2 with Example 2 (Wythoff Nim) leads us to the following
question.

Problem 3. Let (an) and(bn) be a pair of complementary, increasing sequences with
a1 = 1. Suppose further that there exists an invariant subtraction gameG with P (G) =
{{an, bn}} ∪ {0}. Is thenP ((G⋆)⋆) = P (G)?

We know that the answer to Problem 3 is no, if we drop the condition that (bn) is
increasing. Consider the following example :

Example 6. LetG be the invariant game(1, 2)GDWN, studied in [L2], so thatM(G) =
{{0, i}, (i, i), {i, 2i} | i ∈ N}. Define

{{an, bn} | n ∈ N0} := P(G), where(an) is increasing.

Then the sequences(an)n∈N and(bn)n∈N are complementary, butb is not increasing.
Table 3 gives the initialP -positions of this game.
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bn 0 3 6 5 10 14 17 25 28 18 35 23

an 0 1 2 4 7 8 9 11 12 13 15 16

n 0 1 2 3 4 5 6 7 8 9 10 11

TABLE 3. The initialP -positions of the game(1, 2)GDWN. For a more
comprehensive list, see [L2].

Now consider the gameG⋆, as defined by (1.1). It is not hard to check that(11, 23) ∈
P(G⋆). However, by brute-force calculation one may also verify that (104, 235) and
(115, 258) are inP(G). Since

(115, 258) ⊖ (104, 235) = (11, 23),

we see thatP((G⋆)⋆) cannot coincide withP(G).

Another possible direction for future work is to extend our results in some manner
to k-pile subtraction games fork > 2, or even perhaps to consider subtraction games
played on other partially-ordered semigroups. Alternatively, one might try to extend
the notion of‘invariance’ to games which cannot be formulated as subtraction games.
Many such games appear in the literature, see for example [S], where 14 such games
are proved Pspace-complete, 3 played on graphs, including Geography — whose many
variations have been addressed in other papers — and 11 on propositional formulas.
Another example is annihilation games — if a token moves ontoanother one, both
disappear — for which there is a polynomial-time winning strategy [FY].

Finally, the “⋆-operator” introduced in (1.1) and the duality in (1.4) may turn out to
be useful in other contexts.
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