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ABSTRACT. We prove a recent conjecture of Duchéne and Rigo, statiagethery
complementary pair of homogeneous Beatty sequences egpisethe solution to an
invariantimpartial game. Here invariance means that each availablerim a game
can be played anywhere inside the game-board. In fact, vablesdt such a result for
a wider class of pairs of complementary sequences, and iprteess generalize the
notion of asubtraction gameGiven a pair of complementary sequen¢es) and(b,,)
of positive integers, we define a gafiey setting{{a.,, b, } } as invariant moves. We
then introduce the invariant gani&, whose moves are all non-zeRspositions ofG.
Provided the set of non-ze®-positions ofG* equals{{a., b, }}, thisis the desired
invariant game. We give sufficient conditions on the inipair of sequences for this
'duality’ to hold.

1. NOTATION, TERMINOLOGY AND STATEMENT OF RESULTS

This note concerns 2-person, impartial games (see [BC@j)epl under normal (as
against misere) rules. L&{, N, denote the positive and the non-negative integers re-
spectively. Fork € N, let B = B(k) := (Nf, &, <) denote the partially-ordered semi-
group consisting of all orderek-tuples of non-negative integers, where for elements
x = (r1,...,7),y = (y1,...,yx) Of B one defines

cDy = (x14+ v,k + Yr)

and
Hencex < y if x < y andzx; < y; for somei. Fory < x we define

Oy :=(x1— Y1, ., Tk — Yr)-

We call B thegame board Let G = G(F, B) denote a game, where for atl € B,
F(x) C B defines the set afptionsof x in the sense thay € F(x) if and only if
there is a move fromx to y. Formally, themovefrom x to y is the ordered paifx, y).

In this paper, the phrase — y is an option’ will often be used synonymously with
‘y € F(x)’, in order to avoid cumbersome notation.

Given this setting, the two players only need to (randomlgk @ starting position
x € B and decide who plays first. Then they play by alternating ioosing options
from F'(-) (and moving accordingly). Although we have announced tmatdst player
to move wins (normal play), without some additional assuamgthere is no guarantee
that the game will terminate.

Key words and phrasedBeatty sequence, Complementary sequences, Impartial ¢lavagant game,
Superadditivity.
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By a k-pile subtraction gamewe mean a game played @ such that, for each
x € B, the setF'(x) C B has the property thaj € F(x) = y < «. In the setting of
invariant games (to be defined below), it will be convenientlbuse notation and also
refer to thek-tuplex © y - 0 as amove Observe that both options and moves are then
elements of3, but with different meanings.

In this paper, whenever we refer tqsubtraction) gameve intend ak-pile subtrac-
tion game. Let7 be a game. Thefl = 7(G) := {x | F(«) = 0} denotes the set of
terminalpositions. Clearlyd := (0, ...,0) € 7 and0 is unique. It is natural to require
that7 be alower idealin the poset, thatis, it € 7 andy < «, theny € 7. Clearly,
in this setting, any game must terminate within a finite nunadbenoves and thevinner
is the player who makes the last move. The opponent ifodes.

Recently, Duchéne and Rigo [DR] introduced the notion ofreamriant game.

A k-pile invariant subtraction gamé- is defined by a set(G) C B\ {0} of
(invariant) moves, where, for everye M(G) and everyr > r, * — (x © r) is an
option (and these are all the optiohdf a game is not invariant it isariant

A position (a game) if if all of its options areN. Otherwise it isN. This means
that the first player to move wins if and only if the gamé\is As usual, we shall denote
by P(G) (resp.N(G)) the collection ofP- (resp.N-) positions ofG.

Finally, if G is a (not necessarily invariant) game, then we can define \ariant
gameG* on the same game board by setting

M(G*) == P(G)\{0}. (1.1)

Example 1. DefineG by M(G) = ). ThenP(G) = B and saM(G*) = B\ {0}. This
givesP(G*) = {0}, so that in factV (G*) = M(G*). This latter equality does not hold
in general. For example, |t rather denote 2-pile Nim. Théou (G) = {{0,z} | z €

N} andP(G) = {{z,z} | x € Ny}. By (1.1), this givesM (G*) = {{z,z} | = € N}.
Then it is easy to see th@&(G*) = {{0,z} | = € Ny}. Hence, for the two games in
this example we have that:*)* = G. Neither does this equality hold in general. (See
also Example 2.)

From now onwards we lét = 2.

A pair of sequenceér,, ),n and(y,).en Of positive integers is said to lmple-
mentaryif {x,} U {y,} = Nand{z,} Nn{y,} = 0.

Let o < (3 be positive irrational numbers satisfyinga + 1/5 = 1. Hencel <
a < 2 < . We call(«a, #) an (orderedBeatty pair It is well-known [BOHA] that the
sequence§|na|),eny and(|nf]),en are complementary.

Our purpose is to prove the following conjecture [DR]:

lour subtraction games are generalizations of the Nim-tyf#raction games defined in [BCG].
There are some alternative names for our games that can hd fouhe literature, such akake-away
games, Removal gamdy our choice we emphasize the natural additive structorB.o

2This notation and terminology is consistent with that engplbin [DR].

3A subsetR of B = Ny x Ny is symmetridf (z,y) € R < (y,z) € R. (We dispense with the obvious
generalisation t& > 2 piles.) If the setsM(G) and7 (G) are symmetric subsets & then so are the
sets\V(G) andP(G). In this case the gam@ will be calledsymmetric Sometimes it will be convenient
to denote moves and positions of a symmetric game by unatgeies{r, s}. Hence, whenever we write
r, s} € M(G) for example, what we mean is thétr, s), (s,r)} € M(G).
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Conjecture 1.1 (Duchéne-Riga) Let («, 5) be a Beatty pair. Then there exists an
invariant game~ such thatP(G) = {{|n«], [nB3]} | n € No}.

Lett € N. We say that a sequenc¥,, ),.cn, Of non-negative integersissuperadditive
if, for all m,n € Ny,

Xon + X < Xonin < Xon + X0 + . (1.2)

Note that the left-hand inequality of (1.2) is the usual d&én of superadditivity
Leta = (a,)nen @andb = (b,)nen be sequences of positive integers and define
bp = 0. We say that the s€f(a,,b,) | n € Ny} of ordered pairs ig-superadditive-
complementaryabbreviated-SAC, if the following criteria are satisfied:

® (] — 1,
a andb are complementary sequences,
a IS increasing,
b is t-superadditive.

We can now state the main result of this paper :

Theorem 1.2. Suppose that the séta,,b,) | n € Ny} of ordered pairs i9$,-SAC.
DefineG by settingM(G) := {{a,,b,} | n € N}. Then

P(G*) = M(G) U {0} (1.3)
and
(G =G. (1.4)
An immediate consequence of this result is

Corollary 1.3. Suppose thaf(a,,b,) | n € Ny} is b;-SAC. Then there is an invariant
game! such thatP(/) = {{a,,b,} | n € No}.

Proof of Corollary. Take/ = G* in Theorem 1.2. d.

It is well-known and easy to check thatifandb are a pair of complementary homo-
geneous Beatty sequences, then the{get, b,) | n € Ny} is 2-SAC, hencé;-SAC.
Therefore, Corollary 1.3 implies Conjecture 1.1.

Because of (1.4), it is natural to refer to the ga@tedefined by (1.1) as th@ual of
G, when( satisfies the hypotheses of Theorem 1.2. It is important te, f@wever,
that the‘duality relation’ (1.4) doesn’t always hold for gamésnot satisfying these
hypotheses.

Example 2. As a simple but instructive example, tale= WN, the ordinary Wythoff
Nim game [W], so that\(WN) = {{0,:}, (i,4) | « € N}. This set obviously does not
satisfy the hypotheses of Theorem 1.2, whetd48NVN*) does so. Indeed, according
to (1.1), we have

1++5

M(WN*) = P(WN\{0} = {{[ng], [n¢’|} [n €N}, ¢ =— (1.5)

It is easy to see thgt{0, 2} | = € Ny} € P(WN*). Otherwise it is easy to check that
the P-positions of WN begin

(1,1), (3,3), (3,4), (4,4), (6,6), (8,8), (8,9), (8,12), (9,9), (9,12), ...
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(see Figure 1 and [L3] for further results) and hence
(WN*)* £ WN.
But if we go one step further, it follows from (1.5) and Thewré.2 that
((WN*)*)* = WN*.
In particular, the games WN and (WN do have the sam&-positions.
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FIGURE 1. The set{{i,j} € P(WN*) | 0 < i,5 <z} = {(0,0)} U
i, 5} € M((WN*)*) | 0 < 4,5 <o}, forz = 100, 400 respectively.

Numerous generalizations and variations of Wythoff Nim barfound in the litera-
ture. In fact, this game can be credited with opening up thé@dey of the games we
are exploring in this paper. However, we have not been alfiadany literature on the
game(WN*)*.

The rest of the paper is organised as follows. In Section 2yilverove Theorem 1.2.
In Section 3, we explore the problem of describing necesaadysufficient conditions
on a pair(a,), (b,) of complementary sequences for there to exist an invariantey
G with P(G) = {{a,,b,}} U {0}. We are unable to solve this problem definitively,
though we discuss several pertinent examples. One of tleeseimns an application of
Theorem 1.2 to defining an invariant game with the same swls the variant game
'the Mouse game’ [F3]. In another example, we study the seP-giositions of the
invariant game~ = (1,2)GDWN [L2]. Here, theb-sequence is not increasing and we
show thatP((G*)*) # P(G).

2. PROOF OFTHEOREM 1.2

Let us begin by proving some basic facts about any sequerigeSAC pairs.

Proposition 2.1. Suppose thaf(a,, b,) | n € Ny} isb;-SAC. Then, for allh € Ny,
(i) bot1 —bn > b1 > 2,



INVARIANT AND DUAL SUBTRACTION GAMES RESOLVING THE DUCHENERIGO CONJECTURE.5

(“) Qn41 — apn € {172},
(iii) a, < b, and the sequendé,, — a,,) is non-decreasing,
(iv) for all m,n € Ny,

A+ ap — 1 < apin < ap +a, + 1. (2.1)

Proof. Part (i): By definitiona; = 1. Then, by complementarity; > 2. The first
inequality follows by superadditivity.
Part (ii): Letd, := a,+1 — a,. Sincea is increasing we havé, > 1 for all n. Suppose
that there exists an such that/,, > 3. Then, by complementarity, there existsiauch
thatb; = a,, + 1 andb; ;1 = a, + 2. But thenb;,; — b; = 1, contradicting (i).
Part (iii): We haveb; > a; by definition, and it follows from parts (i) and (ii) that the
sequencéb, — a,) is non-decreasing.
Part (iv): Note that, since the sequen¢es and(b;) are increasing and complementary,
we have for any > 0 that

bai—i < a; < bai—i+1- (22)
The inequalities in (2.1) are trivial if eithen or n equals zero, so we may suppose that
m,n > 0. Fix m andn. Let the integers, s be defined by

b, < Qp < bpyq, bs < a, < bgiq. (2.3)

Then, by (2.2), it follows tha,, = m + r anda,, = n + s, hence that,,, + a,, =
(m+n) + (r+ s). First of all, consider the right-hand inequalities in (2.Superaddi-
tivity of b implies that

br+s+2 > br+1+bs+1 > Uy + Oy + 2= (m+n)+(r+s+2)
Then, by (2.2) again we must have
Ui < (M+n)+(r+s+1)=an+a,+1,

which proves the right-hand inequality of (2.1).
Secondly, the fact that the sequemnds b, -superadditive implies that

brps 1 <b1+bs+(b1—1)<(b,—b1)+bs+(by—1)=b.+bs— 1.
This, together with the left-hand inequalities in (2.3) pi;mthat
brys—1 < (am—1)+(an—1)—1=(m+n)+ (r+s—3).
By complementarity, it follows that
min—2 > (Mm+n)+ (r+s—3).
Then, the fact thai is increasing implies that
Umin = Umin—2+2>(m+n)+(r+s—1)=an+a, — 1,

which proves the left-hand inequality of (2.1). This cometethe proof of Proposition
2.1. O

Remark 1. In the above proof, superadditivity éfsufficed, except for the left-hand
inequality in (2.1). Only the latter required-superadditivity. Interestingly enough,
b, -superadditivity is needed for the proof of Theorem 1.2, thetleft-hand inequality
in (2.1) is not.
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For our particular setting, the next lemma is a special caAgaun (iii) of the one to
follow. But it is nice to first state it in a more general form.

Lemma 2.2(A P-positionis never an invariant movd)et G be an invariant subtraction
game. ThenM(G) N P(G) = 0.

Proof. Suppose that there was a mave= P(G). Then, in particular) = r» — r €
F(r). Buto € P(G), so thenr € N (G), a contradiction. O

The hypothesis of the next lemma is satisfied, in particbkagny game= for which
M(G)U{(0)}, viewed as an ordered setlisSAC. The items (i) and (ii) characterize
precisely the lower idedal (G).

Lemma 2.3. Let (a,).eny and (b, ),en be any pair of increasing sequences of positive
integers, and suppose ti@is an invariant subtraction game wit (G) = {{a,,, b, } }.
Then
(i) {0,k} € P(G), forall k € Ny,
(i) {k, 1} e P(G)if k,le{1,2,...,by — 1},
(i) If k,1> 0then{k,l} € N(G) if, for somen > 0,
(@ k =a, andl > b,, or
(b) k£ = b, andl > a,, or
©) a1 <k<a,.1+bandb, 1 <1 <b,_1+0b.

Proof. Parts (i), (ii): By the definition ofM(G), it is clear thatF'({k,(}) = 0 if either
min{k, {} = 0 ormax{k,l} < b;.
Part (iii): If (&) holds, then

(kv l) - (kal) o (am bn) = (Ovl - bn)a

is an option inG. Since(0,! — b,) € P(G) by (i), it follows that (k,1) € N(G).
Similarly, if (b) holds then one considers the option

(k, 1) — (k,1) © (bp,a,) = (0,1 —a,) € P(G).
Finally, if (c) holds, then we have the option
(k7 l) - (ka l) S) (an—la bn—l) = (k - an—lal - bn—l)'

Sincek — a,,_1 < by andl — b,,_1 < by, we have(k — a,,_1,1 — b,_1) € P(G) by (ii),
and hencék, !) € N'(G) once more. O

Proof of Theorem 1.2.Clearly, (1.4) follows from (1.3) so it remains to prove thgér.
Recall that the moves in the gara& are given byM (G*) := P(G) \ {0} and where
M(G) = {{an,b,} | n € Ng} \ {0}. We want to show that

P(G*) ={{an, b} | n € Np}. (2.4)
By the definition ofP, this corresponds to showing that, for &dl, 5) € 5,
3 n such that eithefa, 3) — (a,,b,) or («, 5) — (by, a,) is an option inG*  (2.5)
if and only if {«, 3} # {a;, b;} forall i € Ny.

“N— P”: Suppose thafa, 3} # {a;,b;} for anyi € Ny. If (a,3) € P(G) then
(a, ) — 0 = (ag, by) is an option inG*, thus satisfying (2.5). If«a, 3) € N(G),
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then there existsr,y) € P(G) such that(«, 5) — (z,y) is an option inG. By def-
inition of M(G), there existsj € N such that eithefa, ) & (a;,b;) = (z,y) or
(a, B) & (bj,a;) = (x,y). Note that our assumptions thus imply tiaty) # 0. Hence
(z,y) € P(G)\{0} = M(G*). Since(a, ) © (z,y) € {(a;,b;), (b;,a;)}, we see that
once again (2.5) is satisfied.

“P— N": Suppose thaf«o, 5} = {a;,b;} for somei € Ny and that (2.5) holds. By
symmetry, it suffices to consider the following two caseseré¢hexistsn, n € Ny such
thatm > 0 and either(a,,n, bmin) — (@n,bn) OF (Gmin, Oman) — (bn,a,) iS @n
option inG™*.

First suppose the latter. Let

(2,9) = (tmin, bmin) © (bn, an).
By definition of G*, we must havéz, y) € P(G)\{0}. By Lemma 2.2, we may assume
thatn > 0. Thenx = apin — by < Apin — an < ay, + 1, by parts (iii) and (iv) of
Proposition 2.1. Hence < a,,. By complementarity, there exists < m such that
z € {a,, b,}. On the other hand; = b,,,1, — a, > byn, — by, > by, Dy Superadditivity
of b. In particulary > z. Butthen(z, y) € N (G), by parts (a),(b) of Lemma 2.3(iii), a
contradiction.
Second, suppose th@t,, .., b)) — (an,b,) IS an option inG*. Let

('Tv y) = (am+n7 bm+n) © (ana bn) (26)
As before, we must prove the contradiction thaty) € N (G). By theb;-superadditivity
of b, we have
b <Yy < by + by. (2.7)
If x < a,, then we can appeal to parts (a),(b) of Lemma 2.3(iii) agaip.tii# right-
hand inequality of (2.1), the only other possibility is that a,, + 1. Sincem > 0 and
y > b,, we havey > x. If x = b; for somei, then part (b) of Lemma 2.3(iii) gives a
contradiction. This leaves the possibility that= a,,,1 = a,, + 1. But then, because
of (2.7), we get a contradiction from part (c) of Lemma 2i3(ii O

3. DISCUSSION
In this section we provide four examples and suggest soresfuork.

Example 3. Let « andb be any complementary, though not necessarily increasing,
sequences beginning as in Table 1 below.

As usual, setiy = by := 0. Note that the set of paiff(a,,, b,) | n € Ny} cannot be
b1-SAC, sinceb; = by 1 = by + by + by. Suppose there were an invariant gathwith
P(G) = {{an,b,} | n € No}. Then(2,6) € N(G). But(2,6) = (4,13) © (2,7), a
contradiction.

Nevertheless, if the sequencesndb are increasingqg; = 1 and theb-sequence
grows at only a slightly faster rate than that allowed by Y 1tBen Theorem 1.2 will
hold again. Indeed, suppose that

by > 2b and byyn > byt + by forallm > 1,n > 2. (3.1)

We can still use Lemma 2.3 and one may check that the proof ebfBm 1.2 goes
through. Consider (2.6), for example. We still havec a,, + 1 < a,,1, Since for the
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b, || 3713
a, |12 4
n [|112]3

TABLE 1. Theb-sequence does not satisfy the right-hand inequality &) (1.

right-hand inequality of (2.1) we only requirédto be superadditive. Ik > 2, then
(3.1) implies thaty > b,,,1. Then from Lemma 2.3(iii), parts (a) and (b), it follows that
(z,y) € N(G). We can obtain the same conclusion even whes 1, since then we
still havey > b,, and nowx = a,,,11 — 1 < a,,41, With strict inequality.

Example 4. (A similar example to this one appears in [DR]). Letandb be any
complementary sequences beginning as in Table 2.

Putay = by := 0. The set of pairq(a,,b,) | n € Ny} cannot beh,-SAC since
by = biy1 = by + by — 1. Suppose there were an invariant gaGievith P(G) =
{{an, b} | n € Ng}. Then(1,3) € N(G). But(1,3) = (2,7) © (1, 4), a contradiction.

b, | 4|7
an || 112
n |12

TABLE 2. Theb-sequence does not satisfy superadditivity, the left-hand
inequality in (1.2).

This example also arises from a pair of complementary, dubimogeneous Beatty
sequences. Léty, 5) be a Beatty pair. Let, d € R. For eachn € N, let
an, = |na+7v],  by:=|nB+46]. (3.2)
Fraenkel [F1] proved that the sequen¢es) and(b,,) are complementary if and only if
nB+ 0 ¢ Zforanyn > 1, and
vy 0
257 0. (3.3)
Choose a pair of (small) irrational numbesse; > 0. Leta := % +e, = % — €.
Choose) ¢ Q(/3) satisfying

1
§+€2§(5<1—2€2. (34)

It is not hard to check that, for an appropriate choiceQt,, §, the numbery < 0
defined by (3.3) will satisfy

2 1
—g—€1§7<g—2€1. (35)

From (3.4) and (3.5), one may then verify in turn that the seges(a,,) and (b,)
defined by (3.2) begin as in Table 2.
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Example 5. For eachn € N, leta, = |[22] andb, := 3n — 1. Itis easy to see
that(a,) and(b,) are a pair of complementary, inhomogeneous Beatty seqeeRce

ap = by := 0, as usual. In [F3], a variant gamienamedthe Mouse game’ was invented
with P(G) = {{a.,b,} | n € Ny}. But, since it is easy to verify thdta,, b,)} is b;-
SAC, by Theorem 1.2 we may also introduce an invariant gaémerhich we call ‘the
Mouse trap’, withP(H) = P(G). In analogy with Example 2, the invariant rules are

M(H) = P(G¥).

Remark 2. In [F2, L1] invariant games with symmetric moves are defindthse P-
positions consist of complementary inhomogeneous Beatiyences (CIBS). Both pa-
pers include variations of Wythoff Nim. In the former a misé&ariation (the player who
moves last loses) is studied. Indeed, we believe it to bentiwst natural/direct’ way to
construct a game with CIBS d%-positions. In the latter paper, the terminal positions
are(l,0) and(0,p — [), for some integers < [ < p, so the game is only symmetric if
p = 21. Namely, here the game board is rearranged to

B := (No x No)\{(i,j) | 0<i <l,0<j<p—I}.

The above examples provide some extra insight into theviatig problem, which
nevertheless remains wide open :

Problem 1. Let (a,), (b,) be a pair of complementary, increasing sequences with
a; = 1. Find necessary and sufficient conditions for the existefi@ invariant game
G with P(G) = {{a,, b, }} U{0}.

A special case which might be more tractable is the case @ngeneous Beatty
sequences. Motivated by Examples 4 and 5, we may ask

Problem 2. Let (a,), (b,) be a pair of complementary, inhomogeneous Beatty se-
quences withu; = 1. Is it true that there exists an invariant gafiewith P(G) =
{{an,b,}} U {0} if and only if the set of pairg(a.,, b,,)} is b;-SAC ?

Combining Theorem 1.2 with Example 2 (Wythoff Nim) leads aghe following
guestion.

Problem 3. Let (a,,) and(b,,) be a pair of complementary, increasing sequences with
a; = 1. Suppose further that there exists an invariant subtmactaoneG with P(G) =
{{an,b,}} U{0}. IsthenP((G*)*) = P(G)?

We know that the answer to Problem 3 is no, if we drop the camdithat (b,,) is
increasing. Consider the following example :

Example 6. Let G be the invariant gam@, 2)GDWN, studied in [L2], so thaM (G) =
{{0,4}, (4,40), {7, 2} | i € N}. Define

{{an,bn} | n € No} :=P(G), where(a,) is increasing

Then the sequencés,, ),y and (b, ),y are complementary, buétis not increasing.
Table 3 gives the initiaP-positions of this game.
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b, {{0/3]6]5110(14|17(25|28|18|35|23
a, {01124 7|8]9(11/12|13|15|16
n (0123|4567 |8|9|10|11

TABLE 3. The initial P-positions of the gamél, 2)GDWN. For a more
comprehensive list, see [L2].

Now consider the gam@*, as defined by (1.1). Itis not hard to check that, 23) €
P(G*). However, by brute-force calculation one may also verifgttf104, 235) and
(115,258) are inP(G). Since

(115,258) & (104, 235) = (11, 23),
we see thaP((G*)*) cannot coincide withtP(G).

Another possible direction for future work is to extend oasults in some manner
to k-pile subtraction games fdr > 2, or even perhaps to consider subtraction games
played on other partially-ordered semigroups. Alterrelfivone might try to extend
the notion ofinvariance’ to games which cannot be formulated as sulbtragames.
Many such games appear in the literature, see for examplevi&re 14 such games
are proved Pspace-complete, 3 played on graphs, includdegi@phy — whose many
variations have been addressed in other papers — and 11 pogitional formulas.
Another example is annihilation games — if a token moves @mother one, both
disappear — for which there is a polynomial-time winninggtgy [FY].

Finally, the “«-operator” introduced in (1.1) and the duality in (1.4) mayntout to
be useful in other contexts.
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