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Figure: The P-positions of the gameM = {(−1,−3), (−2, 1)}.
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2. Mysterious patterns of P-positions
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Figure: Initial P-positions of the game given byM = {(0,−2), (−2, 0),
(2,−3), (−3, 2), (−5, 4), (−5,−2), (−4,−3), (−1,−4)}.



3. The rule 60 CA
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Figure: The CA given by f (x , y) = x ⊕ y (Wolfram's rule 60) on the
initial condition . . . 0011 . . .
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3. Pascal's triangle modulo 2
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Figure: The CA given by f (x , y) = x ⊕ y (Wolfram's rule 60) on the
initial condition . . . 0011 . . .



4. CA, Rule 110

I The CA given by Stephen Wolfram's rule 110 with initial string

a central (�nite) data together with left and right periodic

patterns was proved undecidable by Matthew Cook around

year 2000.

I Update rule, a boolean function with a three cell input

ai ,t+1 = f (ai−1,t , ai ,t , ai+1,t):

I f (x , y , z) = 0 i� x = y = z = 1 or x = y = 0.
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4. CA, Rule 110

Figure: CA rule 110, time �ows upwards, initial condition a single �1�.



5. Computing the function f
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Figure: A modular game computing f (x , y) = x ⊕ y in �ve steps. The
arrows indicate move options. The value of each cell is the bracket of the
values of all its options.
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6. via the move sets

The construction in the last �gure corresponds to the modular

game

I M0 = {(0,−1), (0,−2)}
I M4 = {(0,−2), (0,−3)}
I M3 = {(0,−3), (−1,−3)}
I M2 = {(0,−2)}

I M1 = {(−1,−1)}
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7. The P-positions of this modular game

Tape

Time

Figure: A modular game emulating f (x , y) = x ⊕ y . Here the
P-positions with fewer than 50 tokens in each heap are represented by
�lled squares. Rows corresponding to a2 ≡ 0 (mod 5) are highlighted by
drawing the P-positions in red.



8. The check for �101�
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Figure: A modular game G′ with input . . . xyz computing a function f in
a few steps. The �rst two boxes b1 and b2 invert x and z . The third box
b3 is a 1 (=P-position) if and only if xyz = 101.



9. P-positions di�er i� CA contains �101�
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Figure: A modular game G′′ whose output function f is identical to that
of G′. The only di�erence is that G′′ does not check for the pattern 101.
The box b3 contains a 0 independently of the input xyz to f .



10. A classical take-away game, Bouton's Nim (1902)

I A 2-player combinatorial take-away game

I A �nite number of tokens in a (�nite) number

of piles.

I The players alternate to remove a positive

number of tokens from precisely one of the

piles. At most the whole pile.

I The player who removes the last token wins.

I A complete theory: the previous player wins

i�

I sum of heap-sizes modulo 2 equals 0.
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11. Playing 2-pile Nim

P = (0, 0), (1, 1), (2, 2), . . .

I Starting position (3, 5).

I Can the �rst player reassure a �nal
victory?

I Remove two tokens from the
second pile.

I The second player shifts the piles
into unequal heights.
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12. Move-size dynamic rules: Imitation Nim (Larsson 2009)

P = (0, 0), (1, 2), (3, 5), . . .

I The rules are as in Nim but it is
not allowed to imitate the other
player's move: if the previous
player removed x tokens from the
smaller heap (or equal) then the
next player may not remove x

tokens from the larger heap.

I Will the �rst player win from
(3, 5)?

I Suppose that the strategy of Nim
is adapted.

I Then the second player wins by
removing all tokens from one heap.

I In fact, the P-positions are as in
Wytho�'s Nim (1907).
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13. The triangles in the rule 110 CA...

Figure: CA rule 110, time �ows upwards, initial condition a single �1�.



13. ...have the same shapes as those in the rule 60 CA
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Figure: The CA given by f (x , y) = x ⊕ y (Wolfram's rule 60).



14. A terminal position of the rule 60 game

The previous player removed the rightmost match. Hence mp = 1

and so 0 ≤ t ≤ 1. The next player cannot remove both tokens;

neither the �nal match.



15. A next player winning position

The previous player removed the rightmost two matches. Hence

0 ≤ t ≤ 2. Both tokens can be removed and the �nal match.
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16. The position (4, 5, 3)

At most 3 tokens can be removed from this position. Suppose that

Player 1 removes all matches but one. Then player 2 removes all

tokens together with the �nal match.
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At most 3 tokens can be removed from this position. Suppose that

Player 1 removes all matches but one. Then player 2 removes all

tokens together with the �nal match. In fact...



17. The rule 60 game position (4, 5, 3) is in P
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Figure: The green pattern indicates a second player winning position
#tape = 4, #time = 5, mp = 3.



17. so is (4, 5, 2)
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Figure: The green pattern indicates a second player winning position
#tape = 4, #time = 5, mp = 2.



17. and (3, 5, 1)
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Figure: The green pattern indicates a second player winning position
#tape = 4, #time = 5, mp = 1.



17. but not (4, 6, 1)
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Figure: A �rst player winning position #tape = 4, #time = 6, mp = 1
(remove one match or one match and one token).



17. neither is (3, 5, 4)
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Figure: A �rst player winning position #tape = 3, #time = 5, mp = 4
(remove all matches and tokens)



17. nor (4, 4, 2)
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Figure: A �rst player winning position #tape = 4, #time = 4, mp = 2
(remove all but one match and no token).



18. The rule 110 game

Figure: The position (�110100�, 2, 3).

A position of the rule 110 game. The second player wins, see green

circle:



18. The rule 110 CA and some game positions

1 5 10

0

5

Figure: Some rule 110 game positions (mp omitted) for the �nite ending
condition �11010011101100� together with CA updates. Example: green
position (�110100�, 2,mp) second player wins if 1 ≤ mp ≤ 3. For the
other positions the �rst player wins independent of mp.



19. Undecidable F glider occurrence in LCR rule 110 CA
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Figure: An F glider embedded in Rule 110 ether.



20. An undecidable path of moves
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Figure: An optimal sequence of consecutive moves in the rule 110 game
traversing an F glider.


