Impartial games on random graphs

Urban Larsson, joint work with Johan Wästlund

Chalmers and University of Gothenburg, Sweden

October 11 2009

・ロン ・回 と ・ ヨ と ・ ヨ と

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: k-blocking UVG

Table of contents

Undirected Vertex Geography

The Erdös-Rényi model

The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG

A blocking maneuver: k-blocking UVG

▲ □ ► ▲ □ ►

- ∢ ⊒ ⊳

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: k-blocking UVG

The probability of a non-losing strategy

Idea:

Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

イロン イヨン イヨン イヨン

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: *k*-blocking UVG

The probability of a non-losing strategy

Idea:

Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:

Play a coin-sliding game on this random graph.

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: *k*-blocking UVG

The probability of a non-losing strategy

Idea:

Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:

Play a coin-sliding game on this random graph.

Questions:

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: *k*-blocking UVG

The probability of a non-losing strategy

Idea:

Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:

Play a coin-sliding game on this random graph.

Questions:

What is the probability of a second player win?

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: k-blocking UVG

The probability of a non-losing strategy

Idea:

Given some fixed distribution, generate a (possibly infinite) graph at random. The expected number of edges per node depends on some parameter.

A 2-player impartial game:

Play a coin-sliding game on this random graph.

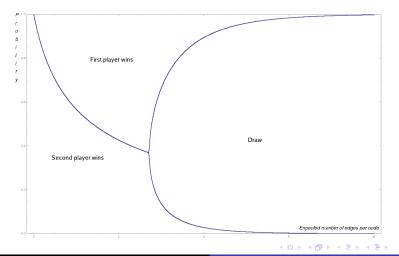
Questions:

- What is the probability of a second player win?
- What is the probability of a draw?

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: k-blocking UVG

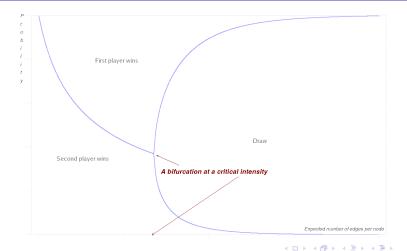
The probability of non-loss and win of $GWUG(\lambda)$



Urban Larsson, joint work with Johan Wästlund

Undirected Vertex Geography The Erdös-Rényi model The Galton Watson Branching Process The game of Galton Watson UVG, GWUVG A blocking maneuver: k-blocking UVG

The probability of non-loss and win of $GWUG(\lambda)$



Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

The Impartial game of Geography

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

イロン イヨン イヨン イヨン

æ

The Impartial game of Geography

Geography, a well-known 2-player children game.

<ロ> (日) (日) (日) (日) (日)

The Impartial game of Geography

- Geography, a well-known 2-player children game.
- ► Undirected Vertex Geography, UVG, a coin-sliding game.

The Impartial game of Geography

- Geography, a well-known 2-player children game.
- ► Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph G = G(V, E) and a starting node $\nu \in V$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Impartial game of Geography

- Geography, a well-known 2-player children game.
- ► Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph G = G(V, E) and a starting node $\nu \in V$.
- ► Two players, A and B, slide a coin alternately along the edges of *G*.

The Impartial game of Geography

- Geography, a well-known 2-player children game.
- ► Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph G = G(V, E) and a starting node $\nu \in V$.
- ► Two players, A and B, slide a coin alternately along the edges of *G*.
- Whenever a player slides the coin from the vertex x to one of its neighbours, x is erased from the game board.

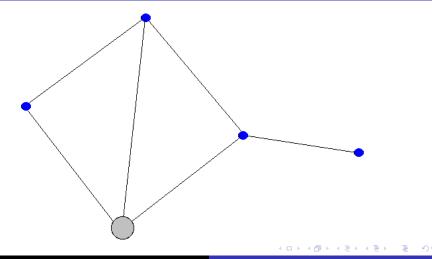
The Impartial game of Geography

- Geography, a well-known 2-player children game.
- ► Undirected Vertex Geography, UVG, a coin-sliding game.
- A simple graph G = G(V, E) and a starting node $\nu \in V$.
- ► Two players, A and B, slide a coin alternately along the edges of *G*.
- Whenever a player slides the coin from the vertex x to one of its neighbours, x is erased from the game board.

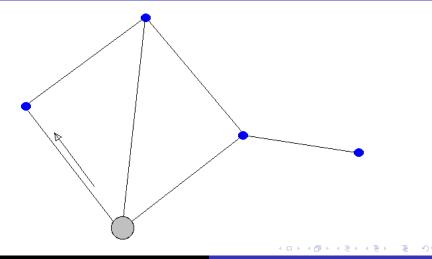
・ロト ・回ト ・ヨト ・ヨト

together with all its incident edges.

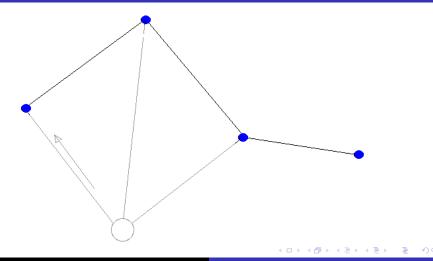
The move rules



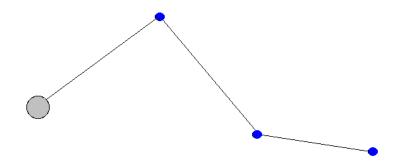
The move rules



The move rules



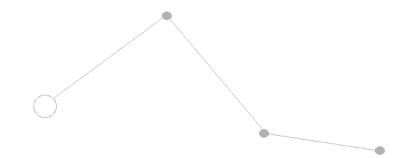
The move rules



< □ > < □ > < □ > < □ > < □ > .

æ

The move rules



< □ > < □ > < □ > < □ > < □ > .

æ

The possibility of a draw game

We play normal play. A player who cannot move loses.

The possibility of a draw game

We play normal play. A player who cannot move loses.

In the infinite case, if none of the players can force a win, the game is declared a draw.

The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.

The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.

イロン イヨン イヨン イヨン

▶ If *G* is finite, there is always a winner.

The possibility of a draw game

We play normal play. A player who cannot move loses.

- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.

イロン イヨン イヨン イヨン

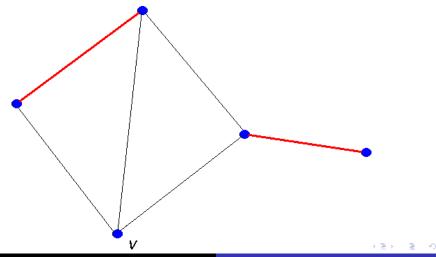
- ▶ If *G* is finite, there is always a winner.
- Game complexity is polynomial.

The possibility of a draw game

We play normal play. A player who cannot move loses.

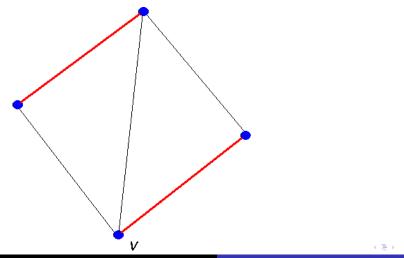
- In the infinite case, if none of the players can force a win, the game is declared a draw.
- A non-losing strategy: Move along the edges in a maximum matching.
- ▶ If *G* is finite, there is always a winner.
- Game complexity is polynomial.
- A.S. Fraenkel, E.R. Scheinerman and D. Ullman, (1993).

The player not moving from ν wins

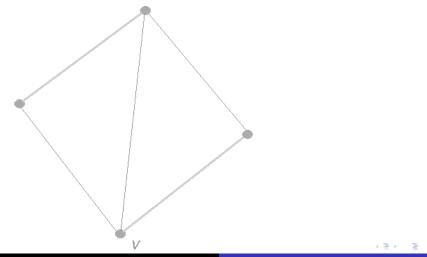


Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

The player moving from ν wins



The player moving from ν wins



The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D.

イロン イヨン イヨン イヨン

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p.

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so

イロン イヨン イヨン イヨン

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!}e^{-\lambda}$.

イロン イヨン イヨン イヨン

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!}e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely G(n, p) contains one giant component of size $\Theta(n)$.

・ロン ・回 と ・ ヨ と ・ ヨ と

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!}e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely G(n, p) contains one giant component of size $\Theta(n)$. If $\lambda < 1$, the size of the largest connected component is $\Theta(log(n))$.

(ロ) (同) (E) (E) (E)

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!}e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely G(n, p) contains one giant component of size $\Theta(n)$. If $\lambda < 1$, the size of the largest connected component is $\Theta(\log(n))$. The number of small cycles in a small component is small.

The Erdös-Rényi (ER) model

Let $n \in \mathbf{N}$ and $p \in [0, 1]$. Let G(n, p) denote an ER-random graph on *n* nodes where an edge $\{x, y\}$ is present with probability *p*.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel, D. The expectation of D is (n-1)p. Keeping the expected degree constant as $n \to \infty$, D may be approximated with a Poissonian random variable with $\lambda = (n-1)p$ and so $\Pr(D = k) = \frac{\lambda^k}{k!}e^{-\lambda}$.

Threshold at $\lambda = 1$

If $\lambda > 1$, almost surely G(n, p) contains one giant component of size $\Theta(n)$. If $\lambda < 1$, the size of the largest connected component is $\Theta(log(n))$. The number of small cycles in a small component is small. Thus, locally, the graph resembles a Branching process.

An instance of G(100,0.01)

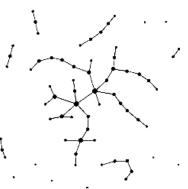


Image: A math a math

4 日本

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

イロト イポト イヨト イヨト

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

• Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.

・ロン ・回と ・ヨン・

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- f(x) is monotone increasing.

イロン イヨン イヨン イヨン

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- ► *f*(*x*) is monotone increasing.
- The expected number of children per node is f'(1).

イロン イヨン イヨン イヨン

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- f(x) is monotone increasing.
- The expected number of children per node is f'(1).
- If f'(1) > 1, the fixpoint equation f(x) = x has two solutions.

<ロ> (四) (四) (注) (注) (注) (三)

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- f(x) is monotone increasing.
- The expected number of children per node is f'(1).
- If f'(1) > 1, the fixpoint equation f(x) = x has two solutions.

<ロ> (四) (四) (注) (注) (注) (三)

• Pr(a branching process dies at generation $0 = a_0$.

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- f(x) is monotone increasing.
- The expected number of children per node is f'(1).
- If f'(1) > 1, the fixpoint equation f(x) = x has two solutions.
- Pr(a branching process dies at generation $0 = a_0$.
- Pr(a branching process has at most k generations) = $f^k(a_0)$.

(ロ) (同) (E) (E) (E)

A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring distibution. Put $a_k = \Pr(D = k)$.

- Generating function $f(x) = \sum_{k=1}^{\infty} a_k x^k$.
- f(x) is monotone increasing.
- The expected number of children per node is f'(1).
- If f'(1) > 1, the fixpoint equation f(x) = x has two solutions.
- Pr(a branching process dies at generation $0 = a_0$.
- Pr(a branching process has at most k generations) = $f^k(a_0)$.

(ロ) (同) (E) (E) (E)

• The probability of extinction is $f^{\infty}(a_0)$.

Survival and extinction

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

・ロト ・回ト ・ヨト ・ヨト

æ

Survival and extinction

• If $0 \le f'(1) \le 1$, the probability of extinction is 1.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

・ロン ・回と ・ヨン ・ヨン

2

Survival and extinction

- If $0 \le f'(1) \le 1$, the probability of extinction is 1.
- If f'(1) > 1 there is a positive probability of survival, say 1α .

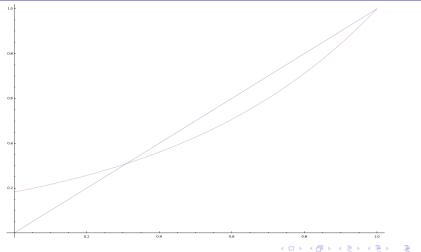
・ロト ・回ト ・ヨト ・ヨト

3

Survival and extinction

- If $0 \le f'(1) \le 1$, the probability of extinction is 1.
- If f'(1) > 1 there is a positive probability of survival, say 1 − α.
- ► This probability is given by the least positive solution to the fixpoint equation: f(α) = α.

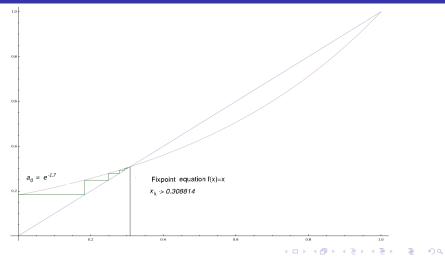
・ロン ・回 と ・ 回 と ・ 回 と



Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs

Iterating $x_{k+1} = f_{1.7}(x_k)$



Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs

The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ , so that

・ロン ・回と ・ヨン・

æ

The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ , so that

$$f(x) = f_{\lambda}(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and

・ロン ・回と ・ヨン・

æ

The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ , so that

$$f(x) = f_{\lambda}(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and

$$f'(x) = \lambda e^{-\lambda(1-x)}.$$

・ロト ・回ト ・ヨト ・ヨト

Putting $x_0 = a_0 > 0$ we may evaluate $\alpha = \lim_{k \to \infty} x_k$, where

The Poisson distribution

Here a_k is given by a Poisson distribution with some fixed parameter λ , so that

$$f(x) = f_{\lambda}(x) = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda(1-x)},$$

and

$$f'(x) = \lambda e^{-\lambda(1-x)}.$$

Putting $x_0 = a_0 > 0$ we may evaluate $\alpha = \lim_{k \to \infty} x_k$, where

$$x_{k+1}=f(x_k)=e^{-\lambda(1-x_k)}.$$

・ロト ・回ト ・ヨト ・ヨト

The game of GWUVG

The previous player is the player not in turn to move. Put

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

The game of GWUVG

The previous player is the player not in turn to move. Put p = Pr(The previous player wins),

イロト イポト イヨト イヨト

The game of GWUVG

The previous player is the player not in turn to move. Put

- p = Pr(The previous player wins),
- q = Pr(The previous player does not lose),

イロン イヨン イヨン イヨン

The game of GWUVG

The previous player is the player not in turn to move. Put

- p = Pr(The previous player wins),
- q = Pr(The previous player does not lose),
- $p_k = \Pr(\text{The previous player wins within } k \text{ generations}),$

ヘロン 人間 とくほど くほとう

The game of GWUVG

The previous player is the player not in turn to move. Put

- p = Pr(The previous player wins),
- q = Pr(The previous player does not lose),
- $p_k = \Pr(\text{The previous player wins within } k \text{ generations}),$
- ▶ q_k = Pr(The previous player does not lose within k generations),

イロト イヨト イヨト イヨト

The game of GWUVG

The previous player is the player not in turn to move. Put

- p = Pr(The previous player wins),
- q = Pr(The previous player does not lose),
- $p_k = \Pr(\text{The previous player wins within } k \text{ generations}),$
- ► q_k = Pr(The previous player does not lose within k generations),
- Then $\lim p_k \to p$ and $\lim q_k \to q$.

<ロ> (四) (四) (注) (注) (注) (三)

The initial conditions

The previous player

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

イロン イヨン イヨン イヨン

æ

The initial conditions

The previous player

• cannot win before game has started: $p_0 = 0$.

イロン イヨン イヨン イヨン

The initial conditions

The previous player

- cannot win before game has started: $p_0 = 0$.
- cannot lose before game has started $q_0 = 1$.

イロト イヨト イヨト イヨト

The initial conditions

The previous player

- cannot win before game has started: $p_0 = 0$.
- cannot lose before game has started $q_0 = 1$.
- wins if there is no offspring: $p_1 = a_0 = e^{-\lambda}$.

イロト イヨト イヨト イヨト

The initial conditions

The previous player

- cannot win before game has started: $p_0 = 0$.
- cannot lose before game has started $q_0 = 1$.
- wins if there is no offspring: $p_1 = a_0 = e^{-\lambda}$.
- ► cannot lose in the first generation since it is the first players turn: q₁ = q₀ = 1.

・ロン ・回と ・ヨン・

Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

イロト イポト イヨト イヨト

Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

•
$$p_{k+1} = \Pr(\text{Player B wins within the first } k+1 \text{ generations})$$

イロト イポト イヨト イヨト

Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)

・ロン ・回と ・ヨン ・ヨン

Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

- p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)
 = Pr(From each first generation child, the previous player
 - loses within the next k generations)

・ロン ・回と ・ヨン ・ヨン

Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree serve as a starting position of UVG. Player A begins. Then

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)
 = Pr(From each first generation child, the previous player

loses within the next k generations)

$$=\sum_{i=0}^{\infty}a_i(1-q_k)^i=f(1-q_k).$$

・ロン ・回と ・ヨン ・ヨン

Looking below the first generation

Similarily:

イロン イヨン イヨン イヨン

æ

Looking below the first generation

Similarily:

▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)

・ロン ・回 と ・ ヨ と ・ ヨ と

Looking below the first generation

Similarily:

▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)

= Pr(Player A does not win within the next k generations)

・ロン ・回と ・ヨン・

Looking below the first generation

Similarily:

▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)

= Pr(Player A does not win within the next k generations)= Pr(From each first generation child, the previous player does not win within the next k generations)

Looking below the first generation

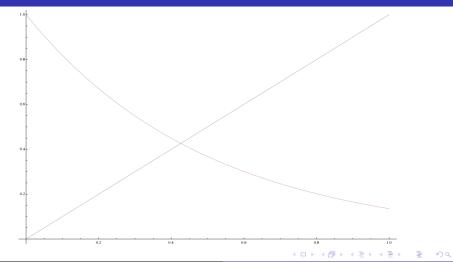
Similarily:

▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)

= Pr(Player A does not win within the next k generations)= Pr(From each first generation child, the previous player does not win within the next k generations)

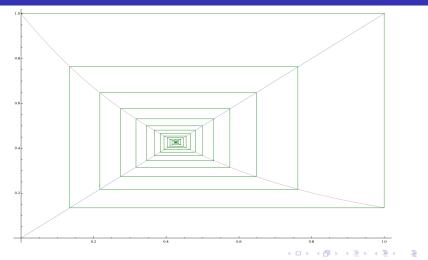
$$=\sum_{i=0}^{\infty}a_{i}(1-p_{k})^{i}=f(1-p_{k})=$$

x and e^{-2x}



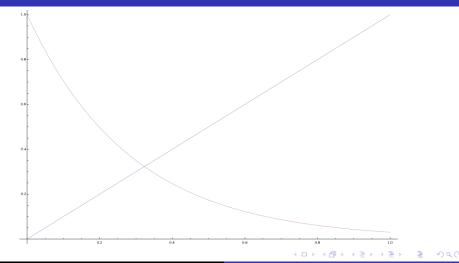
Urban Larsson, joint work with Johan Wästlund

Iterating $p_k = e^{-2q_k}$ and $q_k = e^{-2p_k}$



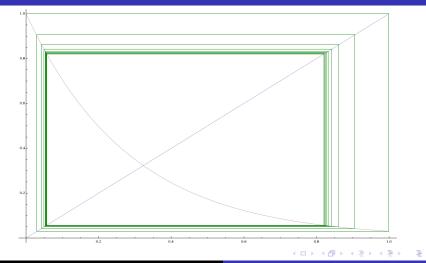
Urban Larsson, joint work with Johan Wästlund

x and $e^{-3.5x}$



Urban Larsson, joint work with Johan Wästlund

Iterating $p_k = e^{-3.5q_k}$ and $q_k = e^{-3.5p_k}$



Urban Larsson, joint work with Johan Wästlund

One-dimensional non-linear dynamics

• Since $|f'_2(\alpha)| < 1$, the first fixpoint is an attractor.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

・ロン ・回と ・ヨン・

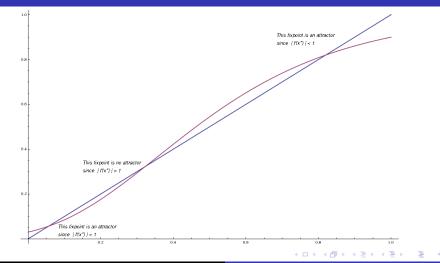
One-dimensional non-linear dynamics

- Since $| f'_2(\alpha) | < 1$, the first fixpoint is an attractor.
- The second fixpoint is repellent, by $|f'_{3.5}(\alpha)| > 1$.

One-dimensional non-linear dynamics

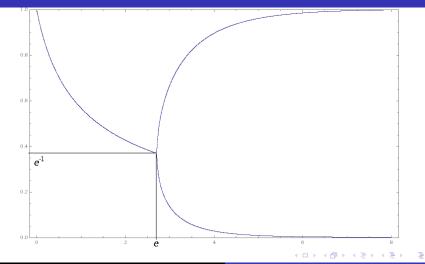
- Since $|f'_2(\alpha)| < 1$, the first fixpoint is an attractor.
- The second fixpoint is repellent, by $|f'_{3.5}(\alpha)| > 1$.
- But it is an attractor of period 2:

x and $e^{-3.5e^{-3.5x}}$

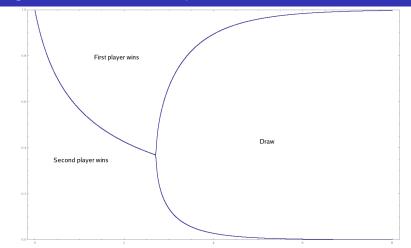


Urban Larsson, joint work with Johan Wästlund

A bifurcation at $\lambda = e$



Urban Larsson, joint work with Johan Wästlund



A game theoretical interpretation

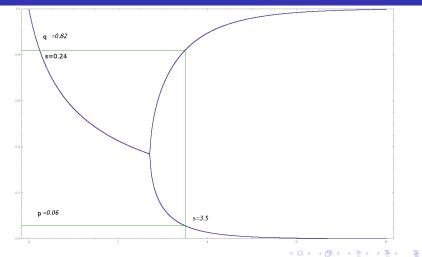
Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs

<ロ> <同> <同> <同> < 同>

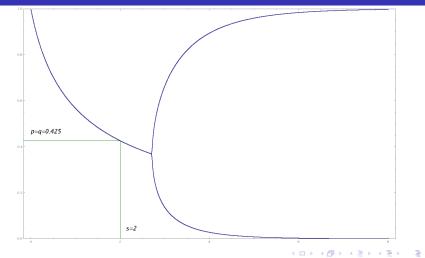
→

p < q if $\lambda > e$



Urban Larsson, joint work with Johan Wästlund

p = q if $\lambda \leq e$



Urban Larsson, joint work with Johan Wästlund

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

<ロ> (日) (日) (日) (日) (日)

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get

・ロン ・回と ・ヨン ・ヨン

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get $f(\alpha) = e^{-\lambda x}$;

・ロト ・回ト ・ヨト ・ヨト

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get • $g(x) = e^{-\lambda x}$; • $g'(x) = -\lambda e^{-\lambda x}$;

・ロン ・回 と ・ ヨ と ・ ヨ と

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get

if

(日) (同) (E) (E) (E)

•
$$g(x) = e^{-\lambda x};$$

• $\sigma'(x) = -\lambda e^{-\lambda x};$

For all x,
$$g'(x) < 0$$
. So α is an attractor if and only $g'(\alpha) \ge -1$;

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get

イロン イ部ン イヨン イヨン 三日

Why a bifurcation at $\lambda = e$?

Theorem

The probability for draw of UVG on a Poissonian GW-tree is 0 if and only if $\lambda \leq e$.

Proof. Put g(x) = f(1 - x). By one-dimensional non-linear dynamics, the fixpoint, say $g(\alpha) = \alpha$, is an attractor if and only if $|g'(\alpha)| \le 1$. We get

•
$$g(x) = e^{-\lambda x};$$

• $g'(x) = \lambda e^{-\lambda x}$

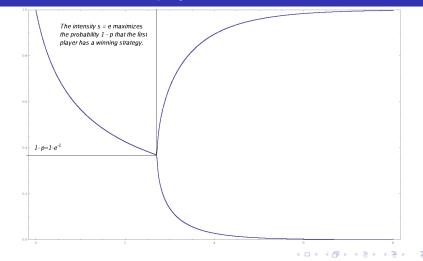
$$g'(x) = -\lambda e^{-\lambda x};$$

For all x, g'(x) < 0. So α is an attractor if and only if g'(α) ≥ −1;

• But
$$g'(\alpha) = -\lambda e^{-\lambda \alpha} = -\lambda \alpha \ge -1;$$

This gives λ ≤ e. At the critical intensity the probability for a second player win is α = ¹/_e.

When does the first player win?



Urban Larsson, joint work with Johan Wästlund Impartial ga

The expected size of a maximum matching in G(n, p)

The Karp-Sipser (1981) leaf removal algorithm on G(n, p) gives a core that covers a finite fraction of all the vertices if $\lambda = (n-1)p > e$.

・ロン ・回と ・ヨン ・ヨン

The expected size of a maximum matching in G(n, p)

The Karp-Sipser (1981) leaf removal algorithm on G(n, p) gives a core that covers a finite fraction of all the vertices if $\lambda = (n-1)p > e$. If $\lambda \leq e$, asymptotically it does not cover any vertices.

The expected size of a maximum matching in G(n, p)

The Karp-Sipser (1981) leaf removal algorithm on G(n, p) gives a core that covers a finite fraction of all the vertices if $\lambda = (n-1)p > e$. If $\lambda \leq e$, asymtotically it does not cover any vertices. For large n, if the core is large all its nodes can be matched.

G(n, p) and a pseudo-draw

Suppose we play a game of UVG on a finite graph with *n* nodes. Then, if no player can force a win within $\sqrt{(\log(n))}$ moves, we define the outcome of the game as a pseudo-draw.

イロン イヨン イヨン イヨン

G(n, p) and a pseudo-draw

Suppose we play a game of UVG on a finite graph with *n* nodes. Then, if no player can force a win within $\sqrt{(\log(n))}$ moves, we define the outcome of the game as a pseudo-draw.

Theorem

The probability for a pseudo-draw of UVG on G(n, p) is 0 if and only if $\lambda \leq e$.

A blocking maneuver

Definition

Let $k \in \mathbf{N}$. The rules of k-blocking UVG are as UVG with the following twist: Before the next player moves, the previous player may block off at most k - 1 edges and declare them as non-slidable.

A blocking maneuver

Definition

Let $k \in \mathbb{N}$. The rules of k-blocking UVG are as UVG with the following twist: Before the next player moves, the previous player may block off at most k - 1 edges and declare them as non-slidable.

So 1-blocking UVG = UVG.

Looking below the first generation

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

イロン イヨン イヨン イヨン

æ

Looking below the first generation

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)

・ロン ・回と ・ヨン・

Looking below the first generation

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)
 = Pr(From at most one first generation child, the previous player wins within the next k generations)

Looking below the first generation

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)
 = Pr(From at most one first generation child, the previous player wins within the next k generations)

$$= \sum_{i=0}^{\infty} a_i ((1-q_k)^i + iq_k(1-q_k)^{k-1}).$$

Looking below the first generation

p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)

= Pr(From at most one first generation child, the previous player wins within the next k generations)

$$= \sum_{i=0}^{\infty} a_i ((1-q_k)^i + iq_k(1-q_k)^{k-1}).$$

= $f(1-q_k) + q_k f'(1-q_k)$

Looking below the first generation

- p_{k+1} = Pr(Player B wins within the first k + 1 generations)
 = Pr(Player A loses within the next k generations)
 - = Pr(From at most one first generation child, the previous player wins within the next k generations)

$$= \sum_{i=0}^{\infty} a_i ((1-q_k)^i + iq_k(1-q_k)^{k-1}).$$

= $f(1-q_k) + q_k f'(1-q_k)$
 $\rightarrow f(1-q) + qf'(1-q).$

Looking below the first generation

Similarily:

イロン イヨン イヨン イヨン

æ

Looking below the first generation

Similarily:

- ▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)
 - = Pr(Player A does not win within the next k generations)

・ロン ・回 と ・ ヨ と ・ ヨ と

Looking below the first generation

Similarily:

- ▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)
 - = Pr(Player A does not win within the next k generations)
 - = Pr(From at most one first generation child, the previous player does not lose within the next k generations)

・ロン ・回 と ・ ヨン ・ ヨン

Looking below the first generation

Similarily:

- ▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)
 - = Pr(Player A does not win within the next k generations)
 - = Pr(From at most one first generation child, the previous player does not lose within the next k generations)

・ロン ・回 と ・ ヨン ・ ヨン

$$=\sum_{i=0}^{\infty}a_i((1-p_k)^i+ip_k(1-p_k)^{k-1})$$

Looking below the first generation

Similarily:

- ▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)
 - = Pr(Player A does not win within the next k generations)
 - = Pr(From at most one first generation child, the previous player does not lose within the next k generations)

イロン イヨン イヨン イヨン

$$= \sum_{i=0}^{\infty} a_i ((1-p_k)^i + ip_k (1-p_k)^{k-1})$$

= $f(1-p_k) + p_k f'(1-p_k)$

Looking below the first generation

Similarily:

▶ q_{k+1} = Pr(Player B does not lose within the first k + 1 generations)

= Pr(Player A does not win within the next k generations)

= Pr(From at most one first generation child, the previous player does not lose within the next k generations)

・ロン ・回 と ・ 回 と ・ 回 と

$$= \sum_{i=0}^{\infty} a_i ((1 - p_k)^i + ip_k (1 - p_k)^{k-1} \\ = f(1 - p_k) + p_k f'(1 - p_k) \\ + \to f(1 - p) + pf'(1 - p).$$

Hence, for 2-blocking UVG, if a_i is Poissonian, we get:

$$q = (1 + \lambda p) e^{-\lambda p}$$

and

$$p=(1+\lambda q)e^{-\lambda q}$$

and so for this game the critical intensity $\lambda_0=\frac{e^\phi}{\phi}$, where $\phi=\frac{1+\sqrt{5}}{2}.$

・ロト ・回ト ・ヨト ・ヨト

2

Hence, for 2-blocking UVG, if a_i is Poissonian, we get:

$$q=(1+\lambda p)e^{-\lambda p}$$

and

$$p=(1+\lambda q)e^{-\lambda q}$$

and so for this game the critical intensity $\lambda_0 = \frac{e^{\phi}}{\phi}$, where $\phi = \frac{1+\sqrt{5}}{2}$. At this intensity and below, the probability for a draw is 0. The probability for a player B win at this intensity is $\frac{\phi^2}{e^{\phi}}$.

・ロット (四) (日) (日)

In general

Let $k \in \mathbf{N}$. We summarize a generalization

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

In general

Let $k \in \mathbf{N}$. We summarize a generalization

 A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;

・ロン ・回 と ・ ヨ と ・ ヨ と

In general

Let $k \in \mathbf{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
- ► A non-losing strategy is to slide along edges in *F*.

イロト イポト イヨト イヨト

In general

Let $k \in \mathbf{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
- ► A non-losing strategy is to slide along edges in *F*.
- ► Denote with x_0 the unique positive real root of the equation $x^{k+1} = \frac{k!}{k!}x^k + \frac{k!}{(k-1)!}x^k + \ldots + \frac{k!}{1!}x + k!.$

(日) (部) (注) (注) (言)

In general

Let $k \in \mathbf{N}$. We summarize a generalization

- A maximal partial k-Factor, F, provides a non-losing strategy for k-UVG on a rooted tree;
- ► A non-losing strategy is to slide along edges in *F*.
- ► Denote with x_0 the unique positive real root of the equation $x^{k+1} = \frac{k!}{k!}x^k + \frac{k!}{(k-1)!}x^k + \ldots + \frac{k!}{1!}x + k!.$
- ► The critical intensity for k-blocking GWUVG is λ₀ = ^{k!e⁰₀}/_{x^k₀}. The probability for a Second player win is α = ^{x^{k+1}₀}/_{k!e^x₀}.

・ロット (四) (日) (日)

Other distributions?

Let a_i be uniformly distributed on 0, 1, ..., N-1 so that $a_i = 1/N$ if $i \in \{0, 1, ..., N-1\}$, and zero otherwise. Denote UVG on this GW process *N*-GW.

Theorem

The probability for a draw on N-GW with uniform distribution is zero for all $N \ge 0$. For N = 2, 3 the second player wins with probability 2/3 and $3 - \sqrt{6} \ 0.55$. For N > 3 the probability for a first player win is > 0.5

イロン イヨン イヨン イヨン

Other distributions?

Let a_i be uniformly distributed on 0, 1, ..., N-1 so that $a_i = 1/N$ if $i \in \{0, 1, ..., N-1\}$, and zero otherwise. Denote UVG on this GW process *N*-GW.

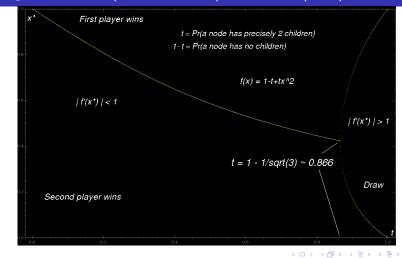
Theorem

The probability for a draw on N-GW with uniform distribution is zero for all $N \ge 0$. For N = 2, 3 the second player wins with probability 2/3 and $3 - \sqrt{6} \ 0.55$. For N > 3 the probability for a first player win is > 0.5

イロン イヨン イヨン イヨン

Is this the end of the story of random 'bifurcation games'?

Wighted Heads(= 0 children) and tails (= 2)?



Urban Larsson, joint work with Johan Wästlund

Impartial games on random graphs