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Chalmers and University of Gothenburg, Sweden

October 11 2009

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The probability of a non-losing strategy

Idea:
Given some fixed distribution, generate a (possibly infinite) graph
at random. The expected number of edges per node depends on
some parameter.

A 2-player impartial game:

Play a coin-sliding game on this random graph.

Questions:

I What is the probability of a second player win?

I What is the probability of a draw?
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Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs



Outline
Undirected Vertex Geography

The Erdös-Rényi model
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The probability of non-loss and win of GWUG(λ)

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Impartial game of Geography

I Geography, a well-known 2-player children game.

I Undirected Vertex Geography, UVG, a coin-sliding game.

I A simple graph G = G (V ,E ) and a starting node ν ∈ V .

I Two players, A and B, slide a coin alternately along the edges
of G .

I Whenever a player slides the coin from the vertex x to one of
its neighbours, x is erased from the game board.

I together with all its incident edges.
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The Impartial game of Geography

I Geography, a well-known 2-player children game.

I Undirected Vertex Geography, UVG, a coin-sliding game.

I A simple graph G = G (V ,E ) and a starting node ν ∈ V .

I Two players, A and B, slide a coin alternately along the edges
of G .

I Whenever a player slides the coin from the vertex x to one of
its neighbours, x is erased from the game board.

I together with all its incident edges.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The move rules

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The possibility of a draw game

We play normal play. A player who cannot move loses.

I In the infinite case, if none of the players can force a win, the
game is declared a draw.

I A non-losing strategy: Move along the edges in a maximum
matching.

I If G is finite, there is always a winner.

I Game complexity is polynomial.

I A.S. Fraenkel, E.R. Scheinerman and D. Ullman, (1993).
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The possibility of a draw game

We play normal play. A player who cannot move loses.

I In the infinite case, if none of the players can force a win, the
game is declared a draw.

I A non-losing strategy: Move along the edges in a maximum
matching.

I If G is finite, there is always a winner.

I Game complexity is polynomial.

I A.S. Fraenkel, E.R. Scheinerman and D. Ullman, (1993).

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The Erdös-Rényi (ER) model

Let n ∈ N and p ∈ [0, 1]. Let G (n, p) denote an ER-random graph
on n nodes where an edge {x , y} is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel,
D. The expectation of D is (n− 1)p. Keeping the expected degree
constant as n→∞, D may be approximated with a Poissonian
random variable with λ = (n − 1)p and so Pr(D = k) = λk

k! e−λ.

Threshold at λ = 1
If λ > 1, almost surely G (n, p) contains one giant component of
size Θ(n). If λ < 1, the size of the largest connected component is
Θ(log(n)). The number of small cycles in a small component is
small. Thus, locally, the graph resembles a Branching process.
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The Erdös-Rényi (ER) model

Let n ∈ N and p ∈ [0, 1]. Let G (n, p) denote an ER-random graph
on n nodes where an edge {x , y} is present with probability p.

A Poissonian degree distribution sequence

The degree of a node is a binomially distributed random variabel,
D. The expectation of D is (n− 1)p. Keeping the expected degree
constant as n→∞, D may be approximated with a Poissonian
random variable with λ = (n − 1)p and so Pr(D = k) = λk

k! e−λ.

Threshold at λ = 1
If λ > 1, almost surely G (n, p) contains one giant component of
size Θ(n). If λ < 1, the size of the largest connected component is
Θ(log(n)). The number of small cycles in a small component is
small. Thus, locally, the graph resembles a Branching process.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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A Galton Watson Branching process (GW)

Start with a single node ν at generation 0 and some fixed offspring
distibution. Put ak = Pr(D = k).

I Generating function f (x) =
∑∞

k=1 akxk .

I f (x) is monotone increasing.

I The expected number of children per node is f ′(1).

I If f ′(1) > 1, the fixpoint equation f (x) = x has two solutions.

I Pr(a branching process dies at generation 0)= a0.

I Pr(a branching process has at most k generations)= f k(a0).

I The probability of extinction is f∞(a0).

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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I If f ′(1) > 1, the fixpoint equation f (x) = x has two solutions.

I Pr(a branching process dies at generation 0)= a0.

I Pr(a branching process has at most k generations)= f k(a0).

I The probability of extinction is f∞(a0).
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Survival and extinction

I If 0 ≤ f ′(1) ≤ 1, the probability of extinction is 1.

I If f ′(1) > 1 there is a positive probability of survival, say
1− α.

I This probability is given by the least positive solution to the
fixpoint equation: f (α) = α.
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f1.7(x)
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Iterating xk+1 = f1.7(xk)
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The Poisson distribution

Here ak is given by a Poisson distribution with some fixed
parameter λ, so that

f (x) = fλ(x) =
∞∑
k=0

λk

k!
e−λ = e−λ(1−x),

and
f ′(x) = λe−λ(1−x).

Putting x0 = a0 > 0 we may evaluate α = limk→∞ xk , where

xk+1 = f (xk) = e−λ(1−xk ).
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The game of GWUVG

The previous player is the player not in turn to move. Put

I p = Pr(The previous player wins),

I q = Pr(The previous player does not lose),

I pk = Pr(The previous player wins within k generations),

I qk = Pr(The previous player does not lose within k
generations),

I Then lim pk → p and lim qk → q.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

The game of GWUVG

The previous player is the player not in turn to move. Put

I p = Pr(The previous player wins),

I q = Pr(The previous player does not lose),

I pk = Pr(The previous player wins within k generations),

I qk = Pr(The previous player does not lose within k
generations),

I Then lim pk → p and lim qk → q.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The initial conditions

The previous player

I cannot win before game has started: p0 = 0.

I cannot lose before game has started q0 = 1.

I wins if there is no offspring: p1 = a0 = e−λ.

I cannot lose in the first generation since it is the first players
turn: q1 = q0 = 1.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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Looking below the first generation

Fix some distribution and let the root (generation 0) of a GW-tree
serve as a starting position of UVG. Player A begins. Then

I pk+1 = Pr(Player B wins within the first k + 1 generations)

= Pr(Player A loses within the next k generations)

= Pr(From each first generation child, the previous player
loses within the next k generations)

=
∑∞

i=0 ai (1− qk)i = f (1− qk).

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs



Outline
Undirected Vertex Geography

The Erdös-Rényi model
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Similarily:
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x and e−2x
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One-dimensional non-linear dynamics

I Since | f ′2(α) |< 1, the first fixpoint is an attractor.

I The second fixpoint is repellent, by | f ′3.5(α) |> 1.

I But it is an attractor of period 2:
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Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs



Outline
Undirected Vertex Geography

The Erdös-Rényi model
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A game theoretical interpretation
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Theorem
The probability for draw of UVG on a Poissonian GW-tree is 0 if
and only if λ ≤ e.

Proof. Put g(x) = f (1− x). By one-dimensional non-linear
dynamics, the fixpoint, say g(α) = α, is an attractor if and only if
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I For all x , g ′(x) < 0. So α is an attractor if and only if

g ′(α) ≥ −1;
I But g ′(α) = −λe−λα = −λα ≥ −1;
I This gives λ ≤ e. At the critical intensity the probability for a

second player win is α = 1
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Why a bifurcation at λ = e?

Theorem
The probability for draw of UVG on a Poissonian GW-tree is 0 if
and only if λ ≤ e.

Proof. Put g(x) = f (1− x). By one-dimensional non-linear
dynamics, the fixpoint, say g(α) = α, is an attractor if and only if
| g ′(α) |≤ 1. We get

I g(x) = e−λx ;
I g ′(x) = −λe−λx ;
I For all x , g ′(x) < 0. So α is an attractor if and only if

g ′(α) ≥ −1;
I But g ′(α) = −λe−λα = −λα ≥ −1;
I This gives λ ≤ e. At the critical intensity the probability for a

second player win is α = 1
e . �

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Why a bifurcation at λ = e?

Theorem
The probability for draw of UVG on a Poissonian GW-tree is 0 if
and only if λ ≤ e.

Proof. Put g(x) = f (1− x). By one-dimensional non-linear
dynamics, the fixpoint, say g(α) = α, is an attractor if and only if
| g ′(α) |≤ 1. We get
I g(x) = e−λx ;
I g ′(x) = −λe−λx ;

I For all x , g ′(x) < 0. So α is an attractor if and only if
g ′(α) ≥ −1;

I But g ′(α) = −λe−λα = −λα ≥ −1;
I This gives λ ≤ e. At the critical intensity the probability for a

second player win is α = 1
e . �

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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When does the first player win?
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The expected size of a maximum matching in G (n, p)

The Karp-Sipser (1981) leaf removal algorithm on G (n, p) gives a
core that covers a finite fraction of all the vertices if
λ = (n − 1)p > e.

If λ ≤ e, asymtotically it does not cover any
vertices.For large n, if the core is large all its nodes can be
matched.
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G (n, p) and a pseudo-draw

Suppose we play a game of UVG on a finite graph with n nodes.
Then, if no player can force a win within

√
( log(n)) moves, we

define the outcome of the game as a pseudo-draw.

Theorem
The probability for a pseodo-draw of UVG on G (n, p) is 0 if and
only if λ ≤ e.
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Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs



Outline
Undirected Vertex Geography

The Erdös-Rényi model
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A blocking maneuver

Definition
Let k ∈N. The rules of k-blocking UVG are as UVG with the
following twist: Before the next player moves, the previous player
may block off at most k − 1 edges and declare them as
non-slidable.

So 1-blocking UVG = UVG.
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The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Looking below the first generation

I pk+1 = Pr(Player B wins within the first k + 1 generations)

= Pr(Player A loses within the next k generations)

= Pr(From at most one first generation child, the previous
player wins within the next k generations)

=
∑∞

i=0 ai ((1− qk)i + iqk(1− qk)k−1).

= f (1− qk) + qk f ′(1− qk)

I → f (1− q) + qf ′(1− q).
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Looking below the first generation

Similarily:
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

Looking below the first generation

Similarily:

I qk+1 = Pr(Player B does not lose within the first k + 1
generations)

= Pr(Player A does not win within the next k generations)

= Pr(From at most one first generation child, the previous
player does not lose within the next k generations)

=
∑∞

i=0 ai ((1− pk)i + ipk(1− pk)k−1

= f (1− pk) + pk f ′(1− pk)

I → f (1− p) + pf ′(1− p).

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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Hence, for 2-blocking UVG, if ai is Poissonian, we get:

q = (1 + λp)e−λp

and
p = (1 + λq)e−λq

and so for this game the critical intensity λ0 = eφ

φ , where

φ = 1+
√
5

2 .

At this intensity and below, the probability for a draw

is 0. The probability for a player B win at this intensity is φ2

eφ
.
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A blocking maneuver: k-blocking UVG

In general

Let k ∈ N. We summarize a generalization

I A maximal partial k-Factor, F , provides a non-losing strategy
for k-UVG on a rooted tree;

I A non-losing strategy is to slide along edges in F .

I Denote with x0 the unique positive real root of the equation
xk+1 = k!

k!x
k + k!

(k−1)!x
k + . . .+ k!

1!x + k!.

I The critical intensity for k-blocking GWUVG is λ0 =
k!ex0
xk0

.

The probability for a Second player win is α =
xk+1
0
k!ex0

.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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The Galton Watson Branching Process

The game of Galton Watson UVG, GWUVG
A blocking maneuver: k-blocking UVG

In general

Let k ∈ N. We summarize a generalization

I A maximal partial k-Factor, F , provides a non-losing strategy
for k-UVG on a rooted tree;

I A non-losing strategy is to slide along edges in F .

I Denote with x0 the unique positive real root of the equation
xk+1 = k!

k!x
k + k!

(k−1)!x
k + . . .+ k!

1!x + k!.

I The critical intensity for k-blocking GWUVG is λ0 =
k!ex0
xk0

.

The probability for a Second player win is α =
xk+1
0
k!ex0

.

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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A blocking maneuver: k-blocking UVG

Other distributions?

Let ai be uniformly distributed on 0, 1, . . . ,N − 1 so that ai = 1/N
if i ∈ {0, 1, . . . ,N − 1}, and zero otherwise. Denote UVG on this
GW process N-GW.

Theorem
The probability for a draw on N-GW with uniform distribution is
zero for all N ≥ 0. For N = 2, 3 the second player wins with
probability 2/3 and 3−

√
6 0.55. For N > 3 the probability for a

first player win is > 0.5

Is this the end of the story of random ’bifurcation games’?

Urban Larsson, joint work with Johan Wästlund Impartial games on random graphs
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Wighted Heads(= 0 children) and tails (= 2)?
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